- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
C++ Program to Find Hamiltonian Cycle in an UnWeighted Graph
A Hamiltonian cycle is a Hamiltonian Path such that there is an edge (in graph) from the last vertex to the first vertex of the Hamiltonian Path. It is in an undirected graph is a path that visits each vertex of the graph exactly once.
Functions and purposes
Begin 1. function isSafe() is used to check for whether it is adjacent to the previously added vertex and already not added. 2. function hamiltonianCycle() solves the hamiltonian problem. 3. function hamCycle() uses hamiltonianCycle() to solve the hamiltonian problem. It returns false if there is no Hamiltonian Cycle possible, otherwise return true and prints the path. End
Example
#include <iostream> #include <cstdio> #include <cstdlib> #define N 5 using namespace std; void displaytheSolution(int path[]); bool isSafe(int n, bool g[N][N], int path[], int pos) { if (g [path[pos-1]][n] == 0) return false; for (int i = 0; i < pos; i++) if (path[i] == n) return false; return true; } bool hamiltonianCycle(bool g[N][N], int path[], int pos) { //If all vertices are included in Hamiltonian Cycle if (pos == N) { if (g[ path[pos-1] ][ path[0] ] == 1) return true; else return false; } for (int n = 1; n < N; n++) { if (isSafe(n, g, path, pos)) { //Check if this vertex can be added to Hamiltonian Cycle path[pos] = n; //recur to construct rest of the path if (hamiltonianCycle (g, path, pos+1) == true) return true; path[pos] = -1; //remove vertex if it doesn’t lead to the solution } } return false; } bool hamCycle(bool g[N][N]) { int *path = new int[N]; for (int i = 0; i < N; i++) path[i] = -1; //put vertex 0 as the first vertex in the path. If there is a Hamiltonian Cycle, then the path can be started from any point //of the cycle as the graph is undirected path[0] = 0; if (hamiltonianCycle(g, path, 1) == false) { cout<<"\nCycle does not exist"<<endl; return false; } displaytheSolution(path); return true; } void displaytheSolution(int p[]) { cout<<"Cycle Exists:"; cout<<" Following is one Hamiltonian Cycle \n"<<endl; for (int i = 0; i < N; i++) cout<<p[i]<<" "; cout<< p[0]<<endl; } int main() { bool g[N][N] = {{0, 1, 0, 1, 1}, {0, 0, 1, 1, 0}, {0, 1, 0, 1, 1}, {1, 1, 1, 0, 1}, {0, 1, 1, 0, 0}, }; hamCycle(g); return 0; }
Output
Cycle Exists: Following is one Hamiltonian Cycle 0 4 1 2 3 0
Advertisements