- DSA - Home
- DSA - Overview
- DSA - Environment Setup
- DSA - Algorithms Basics
- DSA - Asymptotic Analysis
- Data Structures
- DSA - Data Structure Basics
- DSA - Data Structures and Types
- DSA - Array Data Structure
- DSA - Skip List Data Structure
- Linked Lists
- DSA - Linked List Data Structure
- DSA - Doubly Linked List Data Structure
- DSA - Circular Linked List Data Structure
- Stack & Queue
- DSA - Stack Data Structure
- DSA - Expression Parsing
- DSA - Queue Data Structure
- DSA - Circular Queue Data Structure
- DSA - Priority Queue Data Structure
- DSA - Deque Data Structure
- Searching Algorithms
- DSA - Searching Algorithms
- DSA - Linear Search Algorithm
- DSA - Binary Search Algorithm
- DSA - Interpolation Search
- DSA - Jump Search Algorithm
- DSA - Exponential Search
- DSA - Fibonacci Search
- DSA - Sublist Search
- DSA - Hash Table
- Sorting Algorithms
- DSA - Sorting Algorithms
- DSA - Bubble Sort Algorithm
- DSA - Insertion Sort Algorithm
- DSA - Selection Sort Algorithm
- DSA - Merge Sort Algorithm
- DSA - Shell Sort Algorithm
- DSA - Heap Sort Algorithm
- DSA - Bucket Sort Algorithm
- DSA - Counting Sort Algorithm
- DSA - Radix Sort Algorithm
- DSA - Quick Sort Algorithm
- Matrices Data Structure
- DSA - Matrices Data Structure
- DSA - Lup Decomposition In Matrices
- DSA - Lu Decomposition In Matrices
- Graph Data Structure
- DSA - Graph Data Structure
- DSA - Depth First Traversal
- DSA - Breadth First Traversal
- DSA - Spanning Tree
- DSA - Topological Sorting
- DSA - Strongly Connected Components
- DSA - Biconnected Components
- DSA - Augmenting Path
- DSA - Network Flow Problems
- DSA - Flow Networks In Data Structures
- DSA - Edmonds Blossom Algorithm
- DSA - Maxflow Mincut Theorem
- Tree Data Structure
- DSA - Tree Data Structure
- DSA - Tree Traversal
- DSA - Binary Search Tree
- DSA - AVL Tree
- DSA - Red Black Trees
- DSA - B Trees
- DSA - B+ Trees
- DSA - Splay Trees
- DSA - Range Queries
- DSA - Segment Trees
- DSA - Fenwick Tree
- DSA - Fusion Tree
- DSA - Hashed Array Tree
- DSA - K-Ary Tree
- DSA - Kd Trees
- DSA - Priority Search Tree Data Structure
- Recursion
- DSA - Recursion Algorithms
- DSA - Tower of Hanoi Using Recursion
- DSA - Fibonacci Series Using Recursion
- Divide and Conquer
- DSA - Divide and Conquer
- DSA - Max-Min Problem
- DSA - Strassen's Matrix Multiplication
- DSA - Karatsuba Algorithm
- Greedy Algorithms
- DSA - Greedy Algorithms
- DSA - Travelling Salesman Problem (Greedy Approach)
- DSA - Prim's Minimal Spanning Tree
- DSA - Kruskal's Minimal Spanning Tree
- DSA - Dijkstra's Shortest Path Algorithm
- DSA - Map Colouring Algorithm
- DSA - Fractional Knapsack Problem
- DSA - Job Sequencing with Deadline
- DSA - Optimal Merge Pattern Algorithm
- Dynamic Programming
- DSA - Dynamic Programming
- DSA - Matrix Chain Multiplication
- DSA - Floyd Warshall Algorithm
- DSA - 0-1 Knapsack Problem
- DSA - Longest Common Sub-sequence Algorithm
- DSA - Travelling Salesman Problem (Dynamic Approach)
- Hashing
- DSA - Hashing Data Structure
- DSA - Collision In Hashing
- Disjoint Set
- DSA - Disjoint Set
- DSA - Path Compression And Union By Rank
- Heap
- DSA - Heap Data Structure
- DSA - Binary Heap
- DSA - Binomial Heap
- DSA - Fibonacci Heap
- Tries Data Structure
- DSA - Tries
- DSA - Standard Tries
- DSA - Compressed Tries
- DSA - Suffix Tries
- Treaps
- DSA - Treaps Data Structure
- Bit Mask
- DSA - Bit Mask In Data Structures
- Bloom Filter
- DSA - Bloom Filter Data Structure
- Approximation Algorithms
- DSA - Approximation Algorithms
- DSA - Vertex Cover Algorithm
- DSA - Set Cover Problem
- DSA - Travelling Salesman Problem (Approximation Approach)
- Randomized Algorithms
- DSA - Randomized Algorithms
- DSA - Randomized Quick Sort Algorithm
- DSA - Karger’s Minimum Cut Algorithm
- DSA - Fisher-Yates Shuffle Algorithm
- Miscellaneous
- DSA - Infix to Postfix
- DSA - Bellmon Ford Shortest Path
- DSA - Maximum Bipartite Matching
- DSA Useful Resources
- DSA - Questions and Answers
- DSA - Selection Sort Interview Questions
- DSA - Merge Sort Interview Questions
- DSA - Insertion Sort Interview Questions
- DSA - Heap Sort Interview Questions
- DSA - Bubble Sort Interview Questions
- DSA - Bucket Sort Interview Questions
- DSA - Radix Sort Interview Questions
- DSA - Cycle Sort Interview Questions
- DSA - Quick Guide
- DSA - Useful Resources
- DSA - Discussion
Rat in a Maze Problem
The rat in a maze problem is a path finding puzzle in which our objective is to find an optimal path from a starting point to an exit point. In this puzzle, there is a rat which is trapped inside a maze represented by a square matrix. The maze contains different cells through which that rat can travel in order to reach the exit of maze.
Rat in a Maze Problem using Backtracking Approach
Suppose the maze is of size NxN, where cells can either be marked as 1 or 0. A cell marked as 1 indicates a valid path, whereas a cell marked as 0 indicates a wall or blocked cell. Remember, the rat can move in up, down, left, or right directions, but it can only visit each cell once. The source and destination locations are the top-left and bottom-right cells, respectively.
The goal is to find all possible paths for the rat to reach the destination cell (N-1, N-1) from the starting cell (0, 0). The algorithm will display a matrix, from which we can find the path of the rat to reach the destination point. The figure below illustrates the path −
The backtracking process systematically explores all possible paths by marking visited cells and backtracking from dead ends. This approach guarantees to find all possible solutions if they exist for the given problem.
To solve the rat in a maze problem using the backtracking approach, follow the below steps −
First, mark the starting cell as visited.
Next, explore all directions to check if a valid cell exists or not.
If there is a valid and unvisited cell is available, move to that cell and mark it as visited.
If no valid cell is found, backtrack and check other cells until the exit point is reached.
Example
Following is the example illustrating how to solve the Rat in a Maze problem in various programming languages.
#include <stdio.h>
#define N 5
// Original maze
int maze[N][N] = {
{1, 0, 0, 0, 0},
{1, 1, 0, 1, 0},
{0, 1, 1, 1, 0},
{0, 0, 0, 1, 0},
{1, 1, 1, 1, 1}
};
// To store the final solution of the maze path
int sol[N][N];
void showPath() {
printf("The solution maze:\n");
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
printf("%d ", sol[i][j]);
printf("\n");
}
}
// Function to check if a place is inside the maze and has value 1
int isValidPlace(int x, int y) {
if (x >= 0 && x < N && y >= 0 && y < N && maze[x][y] == 1)
return 1;
return 0;
}
int solveRatMaze(int x, int y) {
// When (x,y) is the bottom right room
if (x == N - 1 && y == N - 1) {
sol[x][y] = 1;
return 1;
}
// Check whether (x,y) is valid or not
if (isValidPlace(x, y)) {
// Set 1 when it is a valid place
sol[x][y] = 1;
// Find path by moving in the right direction
if (solveRatMaze(x + 1, y))
return 1;
// When the x direction is blocked, go for the bottom direction
if (solveRatMaze(x, y + 1))
return 1;
// If both directions are closed, there is no path
sol[x][y] = 0;
return 0;
}
return 0;
}
int findSolution() {
if (solveRatMaze(0, 0) == 0) {
printf("There is no path\n");
return 0;
}
showPath();
return 1;
}
int main() {
findSolution();
return 0;
}
#include<iostream>
#define N 5
using namespace std;
// original maze
int maze[N][N] = {
{1, 0, 0, 0, 0},
{1, 1, 0, 1, 0},
{0, 1, 1, 1, 0},
{0, 0, 0, 1, 0},
{1, 1, 1, 1, 1}
};
// to store the final solution of the maze path
int sol[N][N];
void showPath() {
cout << "The solution maze: " << endl;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
cout << sol[i][j] << " ";
cout << endl;
}
}
// function to check place is inside the maze and have value 1
bool isValidPlace(int x, int y) {
if(x >= 0 && x < N && y >= 0 && y < N && maze[x][y] == 1)
return true;
return false;
}
bool solveRatMaze(int x, int y) {
// when (x,y) is the bottom right room
if(x == N-1 && y == N-1) {
sol[x][y] = 1;
return true;
}
//check whether (x,y) is valid or not
if(isValidPlace(x, y) == true) {
//set 1, when it is valid place
sol[x][y] = 1;
//find path by moving right direction
if (solveRatMaze(x+1, y) == true)
return true;
//when x direction is blocked, go for bottom direction
if (solveRatMaze(x, y+1) == true)
return true;
//if both are closed, there is no path
sol[x][y] = 0;
return false;
}
return false;
}
bool findSolution() {
if(solveRatMaze(0, 0) == false) {
cout << "There is no path";
return false;
}
showPath();
return true;
}
int main() {
findSolution();
}
import java.util.Arrays;
public class MazeSolverClass {
private static final int N = 5;
// Original maze
private static int[][] maze = {
{1, 0, 0, 0, 0},
{1, 1, 0, 1, 0},
{0, 1, 1, 1, 0},
{0, 0, 0, 1, 0},
{1, 1, 1, 1, 1}
};
// To store the final solution of the maze path
private static int[][] sol = new int[N][N];
// to display path
private static void showPath() {
System.out.println("The solution maze:");
for (int i = 0; i < N; i++) {
System.out.println(Arrays.toString(sol[i]));
}
}
// Function to check if a place is inside the maze and has value 1
private static boolean isValidPlace(int x, int y) {
return x >= 0 && x < N && y >= 0 && y < N && maze[x][y] == 1;
}
private static boolean solveRatMaze(int x, int y) {
// When (x,y) is the bottom right room
if (x == N - 1 && y == N - 1) {
sol[x][y] = 1;
return true;
}
// Check whether (x,y) is valid or not
if (isValidPlace(x, y)) {
// Set 1 when it is a valid place
sol[x][y] = 1;
// Find path by moving in the right direction
if (solveRatMaze(x + 1, y)) {
return true;
}
// When the x direction is blocked, go for the bottom direction
if (solveRatMaze(x, y + 1)) {
return true;
}
// If both directions are closed, there is no path
sol[x][y] = 0;
return false;
}
return false;
}
private static boolean findSolution() {
return solveRatMaze(0, 0);
}
// main method
public static void main(String[] args) {
if (findSolution()) {
showPath();
} else {
System.out.println("There is no path");
}
}
}
N = 5
# Original maze
maze = [
[1, 0, 0, 0, 0],
[1, 1, 0, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 1, 0],
[1, 1, 1, 1, 1]
]
# To store the final solution of the maze path
sol = [[0] * N for _ in range(N)]
def showPath():
print("The solution maze:")
for row in sol:
print(*row)
def isValidPlace(x, y):
return 0 <= x < N and 0 <= y < N and maze[x][y] == 1
def solveRatMaze(x, y):
# When (x,y) is the bottom right room
if x == N - 1 and y == N - 1:
sol[x][y] = 1
return True
# Check whether (x,y) is valid or not
if isValidPlace(x, y):
# Set 1 when it is a valid place
sol[x][y] = 1
# Find path by moving in the right direction
if solveRatMaze(x + 1, y):
return True
# When the x direction is blocked, go for the bottom direction
if solveRatMaze(x, y + 1):
return True
# If both directions are closed, there is no path
sol[x][y] = 0
return False
return False
def findSolution():
if not solveRatMaze(0, 0):
print("There is no path")
return False
showPath()
return True
if __name__ == "__main__":
findSolution()
Output
The solution maze: 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1