- DSA - Home
- DSA - Overview
- DSA - Environment Setup
- DSA - Algorithms Basics
- DSA - Asymptotic Analysis
- Data Structures
- DSA - Data Structure Basics
- DSA - Data Structures and Types
- DSA - Array Data Structure
- DSA - Skip List Data Structure
- Linked Lists
- DSA - Linked List Data Structure
- DSA - Doubly Linked List Data Structure
- DSA - Circular Linked List Data Structure
- Stack & Queue
- DSA - Stack Data Structure
- DSA - Expression Parsing
- DSA - Queue Data Structure
- DSA - Circular Queue Data Structure
- DSA - Priority Queue Data Structure
- DSA - Deque Data Structure
- Searching Algorithms
- DSA - Searching Algorithms
- DSA - Linear Search Algorithm
- DSA - Binary Search Algorithm
- DSA - Interpolation Search
- DSA - Jump Search Algorithm
- DSA - Exponential Search
- DSA - Fibonacci Search
- DSA - Sublist Search
- DSA - Hash Table
- Sorting Algorithms
- DSA - Sorting Algorithms
- DSA - Bubble Sort Algorithm
- DSA - Insertion Sort Algorithm
- DSA - Selection Sort Algorithm
- DSA - Merge Sort Algorithm
- DSA - Shell Sort Algorithm
- DSA - Heap Sort Algorithm
- DSA - Bucket Sort Algorithm
- DSA - Counting Sort Algorithm
- DSA - Radix Sort Algorithm
- DSA - Quick Sort Algorithm
- Matrices Data Structure
- DSA - Matrices Data Structure
- DSA - Lup Decomposition In Matrices
- DSA - Lu Decomposition In Matrices
- Graph Data Structure
- DSA - Graph Data Structure
- DSA - Depth First Traversal
- DSA - Breadth First Traversal
- DSA - Spanning Tree
- DSA - Topological Sorting
- DSA - Strongly Connected Components
- DSA - Biconnected Components
- DSA - Augmenting Path
- DSA - Network Flow Problems
- DSA - Flow Networks In Data Structures
- DSA - Edmonds Blossom Algorithm
- DSA - Maxflow Mincut Theorem
- Tree Data Structure
- DSA - Tree Data Structure
- DSA - Tree Traversal
- DSA - Binary Search Tree
- DSA - AVL Tree
- DSA - Red Black Trees
- DSA - B Trees
- DSA - B+ Trees
- DSA - Splay Trees
- DSA - Range Queries
- DSA - Segment Trees
- DSA - Fenwick Tree
- DSA - Fusion Tree
- DSA - Hashed Array Tree
- DSA - K-Ary Tree
- DSA - Kd Trees
- DSA - Priority Search Tree Data Structure
- Recursion
- DSA - Recursion Algorithms
- DSA - Tower of Hanoi Using Recursion
- DSA - Fibonacci Series Using Recursion
- Divide and Conquer
- DSA - Divide and Conquer
- DSA - Max-Min Problem
- DSA - Strassen's Matrix Multiplication
- DSA - Karatsuba Algorithm
- Greedy Algorithms
- DSA - Greedy Algorithms
- DSA - Travelling Salesman Problem (Greedy Approach)
- DSA - Prim's Minimal Spanning Tree
- DSA - Kruskal's Minimal Spanning Tree
- DSA - Dijkstra's Shortest Path Algorithm
- DSA - Map Colouring Algorithm
- DSA - Fractional Knapsack Problem
- DSA - Job Sequencing with Deadline
- DSA - Optimal Merge Pattern Algorithm
- Dynamic Programming
- DSA - Dynamic Programming
- DSA - Matrix Chain Multiplication
- DSA - Floyd Warshall Algorithm
- DSA - 0-1 Knapsack Problem
- DSA - Longest Common Sub-sequence Algorithm
- DSA - Travelling Salesman Problem (Dynamic Approach)
- Hashing
- DSA - Hashing Data Structure
- DSA - Collision In Hashing
- Disjoint Set
- DSA - Disjoint Set
- DSA - Path Compression And Union By Rank
- Heap
- DSA - Heap Data Structure
- DSA - Binary Heap
- DSA - Binomial Heap
- DSA - Fibonacci Heap
- Tries Data Structure
- DSA - Tries
- DSA - Standard Tries
- DSA - Compressed Tries
- DSA - Suffix Tries
- Treaps
- DSA - Treaps Data Structure
- Bit Mask
- DSA - Bit Mask In Data Structures
- Bloom Filter
- DSA - Bloom Filter Data Structure
- Approximation Algorithms
- DSA - Approximation Algorithms
- DSA - Vertex Cover Algorithm
- DSA - Set Cover Problem
- DSA - Travelling Salesman Problem (Approximation Approach)
- Randomized Algorithms
- DSA - Randomized Algorithms
- DSA - Randomized Quick Sort Algorithm
- DSA - Karger’s Minimum Cut Algorithm
- DSA - Fisher-Yates Shuffle Algorithm
- Miscellaneous
- DSA - Infix to Postfix
- DSA - Bellmon Ford Shortest Path
- DSA - Maximum Bipartite Matching
- DSA Useful Resources
- DSA - Questions and Answers
- DSA - Selection Sort Interview Questions
- DSA - Merge Sort Interview Questions
- DSA - Insertion Sort Interview Questions
- DSA - Heap Sort Interview Questions
- DSA - Bubble Sort Interview Questions
- DSA - Bucket Sort Interview Questions
- DSA - Radix Sort Interview Questions
- DSA - Cycle Sort Interview Questions
- DSA - Quick Guide
- DSA - Useful Resources
- DSA - Discussion
Job Sequencing with Deadline
Job scheduling algorithm is applied to schedule the jobs on a single processor to maximize the profits.
The greedy approach of the job scheduling algorithm states that, Given n number of jobs with a starting time and ending time, they need to be scheduled in such a way that maximum profit is received within the maximum deadline.
Job Scheduling Algorithm
Set of jobs with deadlines and profits are taken as an input with the job scheduling algorithm and scheduled subset of jobs with maximum profit are obtained as the final output.
Algorithm
Step1 − Find the maximum deadline value from the input set of jobs. Step2 − Once, the deadline is decided, arrange the jobs in descending order of their profits. Step3 − For each job in the sorted order, find the latest available time slot that is less than or equal to its deadline and assign the job to that slot. Step4 − The selected set of jobs are the output.
Examples
Consider the following tasks with their deadlines and profits. Schedule the tasks in such a way that they produce maximum profit after being executed −
| S. No. | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| Jobs | J1 | J2 | J3 | J4 | J5 |
| Deadlines | 2 | 2 | 1 | 3 | 4 |
| Profits | 20 | 60 | 40 | 100 | 80 |
Step 1
Find the maximum deadline value, dm, from the deadlines given.
dm = 4
This means we have 4 time slots available: [1], [2], [3], [4]
Step 2
Arrange the jobs in descending order of their profits.
| S. No. | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| Jobs | J4 | J5 | J2 | J3 | J1 |
| Deadlines | 3 | 4 | 2 | 1 | 2 |
| Profits | 100 | 80 | 60 | 40 | 20 |
Step 3
Select jobs greedily, placing each in the latest available time slot that does not exceed its deadline.
Iteration 1: J4 (Profit = 100, Deadline = 3)
Find the latest free slot ≤ 3. Slot 3 is free, so assign J4 to slot 3.
Slots: [_, _, J4, _] Total Profit = 100
Iteration 2: J5 (Profit = 80, Deadline = 4)
Find the latest free slot ≤ 4. Slot 4 is free, so assign J5 to slot 4.
Slots: [_, _, J4, J5] Total Profit = 100 + 80 = 180
Iteration 3: J2 (Profit = 60, Deadline = 2)
Find the latest free slot ≤ 2. Slot 2 is free, so assign J2 to slot 2.
Slots: [_, J2, J4, J5] Total Profit = 180 + 60 = 240
Iteration 4: J3 (Profit = 40, Deadline = 1)
Find the latest free slot ≤ 1. Slot 1 is free, so assign J3 to slot 1.
Slots: [J3, J2, J4, J5] Total Profit = 240 + 40 = 280
Iteration 5: J1 (Profit = 20, Deadline = 2)
Find the latest free slot ≤ 2. Slots 1 and 2 are already occupied. J1 cannot be scheduled.
Step 4
All jobs have been considered. The algorithm terminates.
Final Result:
The optimal sequence of jobs scheduled within their deadlines is {J3, J2, J4, J5} (executed in time slots 1, 2, 3, 4 respectively) with the maximum profit of 280.
| Time Slot | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| Job | J3 | J2 | J4 | J5 |
| Profit | 40 | 60 | 100 | 80 |
Maximum Profit: 40 + 60 + 100 + 80 = 280
Example
Following is the final implementation of Job sequencing Algorithm using Greedy Approach −
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
// A structure to represent a Job
typedef struct Job {
char id[3]; // Job Id (e.g., "J1", "J2")
int deadline; // Deadline of Job
int profit; // Profit if Job is completed before or on deadline
} Job;
// Comparison function for sorting jobs by profit in descending order
int compare(const void* a, const void* b) {
Job* job1 = (Job*)a;
Job* job2 = (Job*)b;
return (job2->profit - job1->profit);
}
// Find minimum between two numbers
int min(int num1, int num2) {
return (num1 < num2) ? num1 : num2;
}
int main() {
// Jobs from the example: J1, J2, J3, J4, J5
// Deadlines: 2, 2, 1, 3, 4
// Profits: 20, 60, 40, 100, 80
Job arr[] = {
{ "J1", 2, 20 },
{ "J2", 2, 60 },
{ "J3", 1, 40 },
{ "J4", 3, 100 },
{ "J5", 4, 80 }
};
int n = sizeof(arr) / sizeof(arr[0]);
// Find maximum deadline
int maxDeadline = 0;
for (int i = 0; i < n; i++) {
if (arr[i].deadline > maxDeadline)
maxDeadline = arr[i].deadline;
}
printf("Maximum Deadline: %d\n", maxDeadline);
printf("Number of time slots available: %d\n\n", maxDeadline);
// Sort jobs by profit in descending order
qsort(arr, n, sizeof(Job), compare);
printf("Jobs sorted by profit (descending):\n");
for (int i = 0; i < n; i++) {
printf("%s (Deadline: %d, Profit: %d)\n", arr[i].id, arr[i].deadline, arr[i].profit);
}
printf("\n");
int result[maxDeadline]; // To store result sequence of jobs
bool slot[maxDeadline]; // To keep track of free time slots
// Initialize all slots to be free
for (int i = 0; i < maxDeadline; i++)
slot[i] = false;
int totalProfit = 0;
// Iterate through all given jobs
for (int i = 0; i < n; i++) {
// Find a free slot for this job (start from the last possible slot)
for (int j = min(maxDeadline, arr[i].deadline) - 1; j >= 0; j--) {
// Free slot found
if (slot[j] == false) {
result[j] = i;
slot[j] = true;
totalProfit += arr[i].profit;
printf("Scheduled %s in slot %d (Profit: %d)\n", arr[i].id, j + 1, arr[i].profit);
break;
}
}
}
// Print the result
printf("\nFollowing is the maximum profit sequence of Jobs:\n");
for (int i = 0; i < maxDeadline; i++) {
if (slot[i])
printf("Slot %d: %s\n", i + 1, arr[result[i]].id);
}
printf("\nTotal Maximum Profit: %d\n", totalProfit);
return 0;
}
Output
Maximum Deadline: 4 Number of time slots available: 4 Jobs sorted by profit (descending): J4 (Deadline: 3, Profit: 100) J5 (Deadline: 4, Profit: 80) J2 (Deadline: 2, Profit: 60) J3 (Deadline: 1, Profit: 40) J1 (Deadline: 2, Profit: 20) Scheduled J4 in slot 3 (Profit: 100) Scheduled J5 in slot 4 (Profit: 80) Scheduled J2 in slot 2 (Profit: 60) Scheduled J3 in slot 1 (Profit: 40) Following is the maximum profit sequence of Jobs: Slot 1: J3 Slot 2: J2 Slot 3: J4 Slot 4: J5 Total Maximum Profit: 280
#include <iostream>
#include <algorithm>
#include <string>
using namespace std;
struct Job {
string id;
int deadline;
int profit;
};
bool compare(Job j1, Job j2) {
return (j1.profit > j2.profit); // Compare jobs based on profit (descending)
}
int main() {
// Jobs from the example: J1, J2, J3, J4, J5
// Deadlines: 2, 2, 1, 3, 4
// Profits: 20, 60, 40, 100, 80
Job jobs[] = {
{ "J1", 2, 20 },
{ "J2", 2, 60 },
{ "J3", 1, 40 },
{ "J4", 3, 100 },
{ "J5", 4, 80 }
};
int n = 5;
// Find maximum deadline
int maxDeadline = 0;
for (int i = 0; i < n; i++) {
if (jobs[i].deadline > maxDeadline)
maxDeadline = jobs[i].deadline;
}
cout << "Maximum Deadline: " << maxDeadline << endl;
cout << "Number of time slots available: " << maxDeadline << endl << endl;
// Sort jobs by profit in descending order
sort(jobs, jobs + n, compare);
cout << "Jobs sorted by profit (descending):" << endl;
for (int i = 0; i < n; i++) {
cout << jobs[i].id << " (Deadline: " << jobs[i].deadline
<< ", Profit: " << jobs[i].profit << ")" << endl;
}
cout << endl;
int jobSeq[maxDeadline]; // To store result (Sequence of jobs)
bool slot[maxDeadline]; // To keep track of free time slots
// Initialize all slots to be free
for (int i = 0; i < maxDeadline; i++)
slot[i] = false;
int totalProfit = 0;
// Iterate through all given jobs
for (int i = 0; i < n; i++) {
// Find a free slot for this job (start from the last possible slot)
for (int j = min(maxDeadline, jobs[i].deadline) - 1; j >= 0; j--) {
if (slot[j] == false) {
jobSeq[j] = i;
slot[j] = true;
totalProfit += jobs[i].profit;
cout << "Scheduled " << jobs[i].id << " in slot " << j + 1
<< " (Profit: " << jobs[i].profit << ")" << endl;
break;
}
}
}
// Print the result
cout << "\nFollowing is the maximum profit sequence of Jobs:" << endl;
for (int i = 0; i < maxDeadline; i++) {
if (slot[i])
cout << "Slot " << i + 1 << ": " << jobs[jobSeq[i]].id << endl;
}
cout << "\nTotal Maximum Profit: " << totalProfit << endl;
return 0;
}
Output
Maximum Deadline: 4 Number of time slots available: 4 Jobs sorted by profit (descending): J4 (Deadline: 3, Profit: 100) J5 (Deadline: 4, Profit: 80) J2 (Deadline: 2, Profit: 60) J3 (Deadline: 1, Profit: 40) J1 (Deadline: 2, Profit: 20) Scheduled J4 in slot 3 (Profit: 100) Scheduled J5 in slot 4 (Profit: 80) Scheduled J2 in slot 2 (Profit: 60) Scheduled J3 in slot 1 (Profit: 40) Following is the maximum profit sequence of Jobs: Slot 1: J3 Slot 2: J2 Slot 3: J4 Slot 4: J5 Total Maximum Profit: 280
import java.util.*;
public class JobSequencing {
// Job class to represent each job
static class Job {
String id;
int deadline;
int profit;
public Job(String id, int deadline, int profit) {
this.id = id;
this.deadline = deadline;
this.profit = profit;
}
}
public static void main(String[] args) {
// Jobs from the example: J1, J2, J3, J4, J5
// Deadlines: 2, 2, 1, 3, 4
// Profits: 20, 60, 40, 100, 80
ArrayList<Job> jobs = new ArrayList<>();
jobs.add(new Job("J1", 2, 20));
jobs.add(new Job("J2", 2, 60));
jobs.add(new Job("J3", 1, 40));
jobs.add(new Job("J4", 3, 100));
jobs.add(new Job("J5", 4, 80));
int n = jobs.size();
// Find maximum deadline
int maxDeadline = 0;
for (Job job : jobs) {
if (job.deadline > maxDeadline)
maxDeadline = job.deadline;
}
System.out.println("Maximum Deadline: " + maxDeadline);
System.out.println("Number of time slots available: " + maxDeadline + "\n");
// Sort jobs by profit in descending order
Collections.sort(jobs, (a, b) -> b.profit - a.profit);
System.out.println("Jobs sorted by profit (descending):");
for (Job job : jobs) {
System.out.println(job.id + " (Deadline: " + job.deadline + ", Profit: " + job.profit + ")");
}
System.out.println();
// Arrays to track slots and scheduled jobs
boolean[] slot = new boolean[maxDeadline];
String[] result = new String[maxDeadline];
int totalProfit = 0;
// Iterate through all given jobs
for (int i = 0; i < n; i++) {
// Find a free slot for this job (start from the last possible slot)
for (int j = Math.min(maxDeadline, jobs.get(i).deadline) - 1; j >= 0; j--) {
if (!slot[j]) {
slot[j] = true;
result[j] = jobs.get(i).id;
totalProfit += jobs.get(i).profit;
System.out.println("Scheduled " + jobs.get(i).id + " in slot " + (j + 1)
+ " (Profit: " + jobs.get(i).profit + ")");
break;
}
}
}
// Print the result
System.out.println("\nFollowing is the maximum profit sequence of Jobs:");
for (int i = 0; i < maxDeadline; i++) {
if (slot[i])
System.out.println("Slot " + (i + 1) + ": " + result[i]);
}
System.out.println("\nTotal Maximum Profit: " + totalProfit);
}
}
Output
Maximum Deadline: 4 Number of time slots available: 4 Jobs sorted by profit (descending): J4 (Deadline: 3, Profit: 100) J5 (Deadline: 4, Profit: 80) J2 (Deadline: 2, Profit: 60) J3 (Deadline: 1, Profit: 40) J1 (Deadline: 2, Profit: 20) Scheduled J4 in slot 3 (Profit: 100) Scheduled J5 in slot 4 (Profit: 80) Scheduled J2 in slot 2 (Profit: 60) Scheduled J3 in slot 1 (Profit: 40) Following is the maximum profit sequence of Jobs: Slot 1: J3 Slot 2: J2 Slot 3: J4 Slot 4: J5 Total Maximum Profit: 280
# Jobs from the example: J1, J2, J3, J4, J5
# Format: [Job ID, Deadline, Profit]
jobs = [
['J1', 2, 20],
['J2', 2, 60],
['J3', 1, 40],
['J4', 3, 100],
['J5', 4, 80]
]
n = len(jobs)
# Find maximum deadline
max_deadline = max(job[1] for job in jobs)
print(f"Maximum Deadline: {max_deadline}")
print(f"Number of time slots available: {max_deadline}\n")
# Sort jobs by profit in descending order
jobs.sort(key=lambda x: x[2], reverse=True)
print("Jobs sorted by profit (descending):")
for job in jobs:
print(f"{job[0]} (Deadline: {job[1]}, Profit: {job[2]})")
print()
# To keep track of free time slots
slot = [False] * max_deadline
# To store result (Sequence of jobs)
result = [None] * max_deadline
total_profit = 0
# Iterate through all given jobs
for i in range(n):
# Find a free slot for this job
# (Start from the last possible slot)
for j in range(min(max_deadline, jobs[i][1]) - 1, -1, -1):
# Free slot found
if not slot[j]:
slot[j] = True
result[j] = jobs[i][0]
total_profit += jobs[i][2]
print(f"Scheduled {jobs[i][0]} in slot {j + 1} (Profit: {jobs[i][2]})")
break
# Print the result
print("\nFollowing is the maximum profit sequence of Jobs:")
for i in range(max_deadline):
if slot[i]:
print(f"Slot {i + 1}: {result[i]}")
print(f"\nTotal Maximum Profit: {total_profit}")
Output
Maximum Deadline: 4 Number of time slots available: 4 Jobs sorted by profit (descending): J4 (Deadline: 3, Profit: 100) J5 (Deadline: 4, Profit: 80) J2 (Deadline: 2, Profit: 60) J3 (Deadline: 1, Profit: 40) J1 (Deadline: 2, Profit: 20) Scheduled J4 in slot 3 (Profit: 100) Scheduled J5 in slot 4 (Profit: 80) Scheduled J2 in slot 2 (Profit: 60) Scheduled J3 in slot 1 (Profit: 40) Following is the maximum profit sequence of Jobs: Slot 1: J3 Slot 2: J2 Slot 3: J4 Slot 4: J5 Total Maximum Profit: 280