# Insertion Sort

This sorting technique is similar with the card sorting technique, in other words, we sort cards using insertion sort mechanism. For this technique, we pick up one element from the data set and shift the data elements to make a place to insert back the picked up an element into the data set.

## The complexity of the Insertion Sort Technique

• Time Complexity: O(n) for best case, O(n^2) for average and worst case
• Space Complexity: O(1)

## Input and Output

Input:
The unsorted list: 9 45 23 71 80 55
Output:
Array before Sorting: 9 45 23 71 80 55
Array after Sorting: 9 23 45 55 71 80

## Algorithm

insertionSort(array, size)

Input − An array of data, and the total number in the array

Output &−  The sorted Array

Begin
for i := 1 to size-1 do
key := array[i]
j := i
while j > 0 AND array[j-1] > key do
array[j] := array[j-1];
j := j – 1
done
array[j] := key
done
End

## Example

#include<iostream>
using namespace std;

void display(int *array, int size) {
for(int i = 0; i<size; i++)
cout << array[i] << " ";
cout << endl;
}

void insertionSort(int *array, int size) {
int key, j;

for(int i = 1; i<size; i++) {
key = array[i];//take value
j = i;

while(j > 0 && array[j-1]>key) {
array[j] = array[j-1];
j--;
}

array[j] = key;//insert in right place
}
}

int main() {
int n;
cout << "Enter the number of elements: ";
cin >> n;
int arr[n]; //create an array with given number of elements
cout << "Enter elements:" << endl;

for(int i = 0; i<n; i++) {
cin >> arr[i];
}

cout << "Array before Sorting: ";
display(arr, n);
insertionSort(arr, n);
cout << "Array after Sorting: ";
display(arr, n);
}

## Output

Enter the number of elements: 6
Enter elements:
9 45 23 71 80 55
Array before Sorting: 9 45 23 71 80 55
Array after Sorting: 9 23 45 55 71 80