
- Data Structures & Algorithms
- DSA - Home
- DSA - Overview
- DSA - Environment Setup
- Algorithm
- DSA - Algorithms Basics
- DSA - Asymptotic Analysis
- DSA - Greedy Algorithms
- DSA - Divide and Conquer
- DSA - Dynamic Programming
- Data Structures
- DSA - Data Structure Basics
- DSA - Array Data Structure
- Stack & Queue
- DSA - Stack
- DSA - Expression Parsing
- DSA - Queue
- Searching Techniques
- DSA - Linear Search
- DSA - Binary Search
- DSA - Interpolation Search
- DSA - Hash Table
- Sorting Techniques
- DSA - Sorting Algorithms
- DSA - Bubble Sort
- DSA - Insertion Sort
- DSA - Selection Sort
- DSA - Merge Sort
- DSA - Shell Sort
- DSA - Quick Sort
- Graph Data Structure
- DSA - Graph Data Structure
- DSA - Depth First Traversal
- DSA - Breadth First Traversal
- Tree Data Structure
- DSA - Tree Data Structure
- DSA - Tree Traversal
- DSA - Binary Search Tree
- DSA - AVL Tree
- DSA - Spanning Tree
- DSA - Heap
- DSA Useful Resources
- DSA - Questions and Answers
- DSA - Quick Guide
- DSA - Useful Resources
- DSA - Discussion
Aho-Corasick Algorithm
This algorithm is helpful to find all occurrences of all given set of keywords. It is a kind of Dictionary-matching algorithm. It uses a tree structure using all keywords. After making the tree, it tries to convert the tree as an automaton to make the searching in linear time. There are three different phases of Aho-Corasick Algorithm.
These are Go-to, Failure, and Output. In the go-to stage, it makes the tree using all the keywords. In the next phase or in the Failure Phase, it tries to find the backward transition to get a proper suffix of some keywords. In the output stage, for every state ‘s’ of the automaton, it finds all words which are ending at the state ‘s’.
The time complexity of this algorithm is: O(N + L + Z), where N is the length of the text, L is the length of keywords and the Z is a number of matches.
Input and Output
Input: A set of patterns: {their, there, answer, any, bye} The main string: “isthereanyanswerokgoodbye” Output: Word there location: 2 Word any location: 7 Word answer location: 10 Word bye location: 22
Algorithm
buildTree(patternList, size)
Input − The list of all patterns, and the size of the list
Output − Generate the transition map to find the patterns
Begin set all elements of output array to 0 set all elements of fail array to -1 set all elements of goto matrix to -1 state := 1 //at first there is only one state. for all patterns ‘i’ in the patternList, do word := patternList[i] present := 0 for all character ‘ch’ of word, do if goto[present, ch] = -1 then goto[present, ch] := state state := state + 1 present:= goto[present, ch] done output[present] := output[present] OR (shift left 1 for i times) done for all type of characters ch, do if goto[0, ch] ≠ 0 then fail[goto[0,ch]] := 0 insert goto[0, ch] into a Queue q. done while q is not empty, do newState := first element of q delete from q. for all possible character ch, do if goto[newState, ch] ≠ -1 then failure := fail[newState] while goto[failure, ch] = -1, do failure := goto[failure, ch] done fail[goto[newState, ch]] = failure output[goto[newState, ch]] :=output[goto[newState,ch]] OR output[failure] insert goto[newState, ch] into q. done done return state End
getNextState(presentState, nextChar)
Input − present state and the next character to determine next state
Output: the next state
Begin answer := presentState ch := nextChar while goto[answer, ch] = -41, do answer := fail[answer] done return goto[answer, ch] End
patternSearch(patternList, size, text)
Input − List of patterns, size of the list and the main text
Output − The indexes of the text where patterns are found
Begin call buildTree(patternList, size) presentState := 0 for all indexes of the text, do if output[presentState] = 0 ignore next part and go for next iteration for all patterns in the patternList, do if the pattern found using output array, then print the location where pattern is present done done End
Example
#include <iostream> #include <queue> #define MAXS 500 //sum of the length of all patterns #define MAXC 26 //as 26 letters in alphabet using namespace std; int output[MAXS]; int fail[MAXS]; int gotoMat[MAXS][MAXC]; int buildTree(string array[], int size) { for(int i = 0; i<MAXS; i++) output[i] = 0; //all element of output is 0 for(int i = 0; i<MAXS; i++) fail[i] = -1; //all element of failure array is -1 for(int i = 0; i<MAXS; i++) for(int j = 0; j<MAXC; j++) gotoMat[i][j] = -1; //all element of goto matrix is -1 int state = 1; //there is only one state for (int i = 0; i < size; i++) { //make trie structure for all pattern in array //const string &word = array[i]; string word = array[i]; int presentState = 0; for (int j = 0; j < word.size(); ++j) { //all pattern is added int ch = word[j] - 'a'; if (gotoMat[presentState][ch] == -1) //ic ch is not present make new node gotoMat[presentState][ch] = state++; //increase state presentState = gotoMat[presentState][ch]; } output[presentState] |= (1 << i); //current word added in the output } for (int ch = 0; ch < MAXC; ++ch) //if ch is not directly connected to root if (gotoMat[0][ch] == -1) gotoMat[0][ch] = 0; queue<int> q; for (int ch = 0; ch < MAXC; ++ch) { //node goes to previous state when fails if (gotoMat[0][ch] != 0) { fail[gotoMat[0][ch]] = 0; q.push(gotoMat[0][ch]); } } while (q.size()) { int state = q.front(); //remove front node q.pop(); for (int ch = 0; ch <= MAXC; ++ch) { if (gotoMat[state][ch] != -1) { //if goto state is present int failure = fail[state]; while (gotoMat[failure][ch] == -1) //find deepest node with proper suffix failure = fail[failure]; failure = gotoMat[failure][ch]; fail[gotoMat[state][ch]] = failure; output[gotoMat[state][ch]] |= output[failure]; // Merge output values q.push(gotoMat[state][ch]); //add next level node to the queue } } } return state; } int getNextState(int presentState, char nextChar) { int answer = presentState; int ch = nextChar - 'a'; //subtract ascii of 'a' while (gotoMat[answer][ch] == -1) //if go to is not found, use fail function answer = fail[answer]; return gotoMat[answer][ch]; } void patternSearch(string arr[], int size, string text) { buildTree(arr, size); //make the trie structure int presentState = 0; //make current state as 0 for (int i = 0; i < text.size(); i++) { //find all occurances of pattern presentState = getNextState(presentState, text[i]); if (output[presentState] == 0) //if no match continue; for (int j = 0; j < size; ++j) { //matching found and print words if (output[presentState] & (1 << j)) { cout << "Word " << arr[j] << " location: " << i - arr[j].size() + 1 << endl; } } } } int main() { string arr[] = {"their", "there", "answer", "any", "bye"}; string text = "isthereanyanswerokgoodbye"; int k = sizeof(arr)/sizeof(arr[0]); patternSearch(arr, k, text); return 0; }
Output
Word there location: 2 Word any location: 7 Word answer location: 10 Word bye location: 22
- Related Articles
- Aho-Corasick Algorithm for Pattern Searching in C++
- kasai’s Algorithm
- Manacher’s Algorithm
- Z Algorithm
- Fleury’s Algorithm
- AIMD Algorithm
- DeepWalk Algorithm
- Z algorithm (Linear time pattern searching Algorithm) in C++
- Matrix multiplication algorithm
- Huffman Coding Algorithm
- Boyer Moore Algorithm
- Rabin-Karp Algorithm
- Ford Fulkerson Algorithm
- Floyd Warshall Algorithm
- Flood fill Algorithm
