- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Power Flow Transfer Equations for a Synchronous Generator
The circuit model of a cylindrical rotor synchronous generator is shown in Figure-1.
Let,
π = Terminal voltage per phase
$πΈ_{π}$ = Excitation voltage per phase
$πΌ_{π}$ = Armature current
$\delta$ = Load angle or angle between π and $πΈ_{π}$
Also, the phasor diagram of the alternator at lagging power factor is shown in Figure-2.
For an alternator or synchronous generator, the excitation voltage ($πΈ_{π}$) leads the terminal voltage (V) by the load angle ($\delta$) of the machine. Thus,
$$\mathrm{π½ = π\angle0°\:\:and\:\:π¬_{π} = πΈ_{π}\angle \delta}$$
The synchronous impedance of the alternator is given by,
$$\mathrm{π_{π} = π _{π} + ππ_{π } = π_{π }\angleπ_{π§} … (1)}$$
Where, the angle ($π_{π§}$) is the impedance angle.
From the impedance triangle shown in Figure-3, $π_{π§}$ is given by,
$$\mathrm{π_{π§} = \tan^{-1} \left(\frac{π_{π }}{π _{π}} \right)… (2)}$$
And
$$\mathrm{α_{π§} = (90° − π_{π§} ) = \tan^{-1} \left(\frac{π _{π}}{π_{π }} \right)… (3)}$$
Now, by applying KVL in the circuit of Figure-1, we get,
$$\mathrm{π¬_{π} = π½ + π°_{π}π_{π} … (4)}$$
$$\mathrm{∴\:π°_{π} =\frac{π¬_{π} − π½}{π_{π}}… (5)}$$
Power Flow Transfer Equations for an Alternator
The various power relation of the alternator, when the armature resistance is considered, are given as follows −
Complex power output per phase of the alternator −
$$\mathrm{π_{ππ} = π_{ππ} + ππ_{ππ}}$$
$$\mathrm{=\frac{ππΈ_{π}}{π_{π }}cos(π_{π§} − \delta) +π\frac{ππΈ_{π}}{π_{π }}sin(π_{π§} − \delta)-\frac{π^{2}}{π_{π }}(coπ_{π§ }+ π\:sin\:π_{π§}) … (6)}$$
Real output power per phase of the alternator −
$$\mathrm{π_{ππ}=\frac{ππΈ_{π}}{π_{π }}sin(\delta + α_{π§}) −\frac{π^{2}}{π^{2}_{π }}π _{π} … (7)}$$
Reactive output power per phase of the alternator −
$$\mathrm{π_{ππ} =\frac{ππΈ_{π}}{π_{π }}cos(\delta + α_{π§}) −\frac{π^{2}}{π^{2}_{π }}π_{π } … (8)}$$
Complex input power to the alternator per phase −
$$\mathrm{π_{ππ} = π_{ππ} + ππ_{ππ}}$$
$$\mathrm{=\frac{πΈ^{2}_{π}}{π_{π }}(cos\:π_{π§} + π\:sin\:π_{π§}) −\left [\frac{ππΈ_{π}}{π_{π }} cos(π_{π§} + \delta) + π\frac{ππΈ_{π}}{π_{π }}sin(π_{π§} + \delta )\right ]… (9)}$$
Real power input to the alternator per phase −
$$\mathrm{π_{ππ} =\frac{πΈ^{2}_{π}}{π^{2}_{π }}π _{π} +\frac{ππΈ_{π}}{π_{π }}sin(\delta − πΌ_{π§} ) … (10)}$$
Reactive power input to the alternator per phase −
$$\mathrm{π_{ππ} =\frac{πΈ^{2}_{π}}{π^{2}_{π }}π_{π }−\frac{ππΈ_{π}}{π_{π }}cos(\delta − α_{π§} ) … (11)}$$
Power Flow Equations for an Alternator with Armature Resistance Neglected
In practice, for a 3-phase alternator or synchronous generator $π _{π}$ < $π_{π }$ and hence the armature resistance ($π _{π}$) can be neglected in the power flow transfer equations. Therefore, when the armature resistance ($π _{π}$) is neglected, then the synchronous impedance is,
$$\mathrm{π_{π } = π_{π }\:\:and\:\:α_{π§} = 0}$$
Therefore, the output power per phase of the alternator is,
$$\mathrm{π_{ππ} =\frac{ππΈ_{π}}{π_{π }}sin\:\delta … (12)}$$
$$\mathrm{π_{ππ} =\frac{ππΈ_{π}}{π_{π }}cos\:\delta −\frac{π^{2}}{π_{π }}… (13)}$$
And, the input power to the alternator per phase is,
$$\mathrm{π_{ππ} =\frac{ππΈ_{π}}{π_{π }}sin\:\delta = π_{ππ} … (14)}$$
$$\mathrm{π_{ππ} =\frac{πΈ^{2}_{π}}{π_{π }}−\frac{ππΈ_{π}}{π_{π }}cos\:\delta… (15)}$$
- Related Articles
- Maximum Reactive Power for a Synchronous Generator or Alternator
- Power Flow in Synchronous Motor
- Power Input of Synchronous Generator or Alternator
- Power Output of Synchronous Generator or Alternator
- Synchronous Generator β Zero Power Factor Characteristics and Potier Triangle
- Saturated and Unsaturated Synchronous Reactance in Synchronous Generator
- Cooling of a Synchronous Generator or Alternator
- Hydrogen Cooling of a Synchronous Generator or Alternator
- Prime-Mover Governor Characteristics (Synchronous Generator)
- Synchronous Generator β Construction and Working Principle
- Voltage Regulation of Alternator or Synchronous Generator
- Armature Reaction in Alternator or Synchronous Generator
- EMF Equation of Synchronous Generator or Alternator
- Operation of Synchronous Generator with an Infinite Bus
- Mechanical Power Developed by a Synchronous Motor
