- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Parallel Form Realization of Continuous-Time Systems
Realization of Continuous-Time System
Realisation of a continuous-time LTI system means obtaining a network corresponding to the differential equation or transfer function of the system.
The transfer function of the system can be realised either by using integrators or differentiators. Due to certain drawbacks, the differentiators are not used to realise the practical systems. Therefore, only integrators are used for the realization of continuous-time systems. The adder and multipliers are other two elements which are used realise the continuous-time systems.
Parallel Form Realisation of Continuous-Time Systems
In the parallel form realisation of continuous-time systems, the transfer function of the system is expressed into its partial fractions and each factor is then realised using integrators and adders. Finally, all the realised structures are connected in parallel, i.e., the input signal is applied to each one of those structures and all the output signals are added together.
Following example explains the realisation of continuous-time systems in parallel form.
Numerical Example
Realise the continuous-time system described by the following transfer function in parallel form.
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{s\left ( s\mathrm{\,+\,}\mathrm{1} \right )}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )\left ( s\mathrm{\,+\,}\mathrm{3} \right )\left ( s\mathrm{\,+\,}\mathrm{4} \right )}}}$$
Solution
The given transfer function of the system is
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{Y\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{s\left ( s\mathrm{\,+\,}\mathrm{1} \right )}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )\left ( s\mathrm{\,+\,}\mathrm{3} \right )\left ( s\mathrm{\,+\,}\mathrm{4} \right )}}}$$
The partial fraction of H(s) are,
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{s\left ( s\mathrm{\,+\,}\mathrm{1} \right )}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )\left ( s\mathrm{\,+\,}\mathrm{3} \right )\left ( s\mathrm{\,+\,}\mathrm{4} \right )}\mathrm{\,=\,}\frac{A}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )}\mathrm{\,+\,}\frac{B}{\left ( s\mathrm{\,+\,}\mathrm{3} \right )}\mathrm{\,+\,}\frac{C}{\left ( s\mathrm{\,+\,}\mathrm{4} \right )}}}$$
Now, the coefficients A, B and C are determined as follows −
$$\mathrm{\mathit{A\mathrm{\,=\,}\left [ \left ( s\mathrm{\,+\,}\mathrm{2} \right )H\left ( s \right ) \right ]_{s\mathrm{\,=\,}-\mathrm{2}}\mathrm{\,=\,}\left [ \frac{s\left ( s\mathrm{\,+\,}\mathrm{1} \right )}{\left ( s\mathrm{\,+\,}\mathrm{3} \right )\left ( s\mathrm{\,+\,}\mathrm{4} \right )} \right ]_{s\mathrm{\,=\,}-\mathrm{2}}}}$$
$$\mathrm{\mathit{\therefore A\mathrm{\,=\,}\frac{\left ( -\mathrm{2} \right )\left ( -\mathrm{2\mathrm{\,+\,}1} \right )}{\mathrm{\left ( -2\mathrm{\,+\,}3 \right )\left ( -2\mathrm{\,+\,}4 \right )}}\mathrm{\,=\,}\mathrm{\frac{2}{2}\mathrm{\,=\,}1}}}$$
$$\mathrm{\mathit{B\mathrm{\,=\,}\left [ \left ( s\mathrm{\,+\,}\mathrm{3} \right )H\left ( s \right ) \right ]_{s\mathrm{\,=\,}-\mathrm{3}}\mathrm{\,=\,}\left [ \frac{s\left ( s\mathrm{\,+\,}\mathrm{1} \right )}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )\left ( s\mathrm{\,+\,}\mathrm{4} \right )} \right ]_{s\mathrm{\,=\,}-\mathrm{3}}}}$$
$$\mathrm{\mathit{\therefore B\mathrm{\,=\,}\frac{\left ( -\mathrm{3} \right )\left ( -\mathrm{3\mathrm{\,+\,}1} \right )}{\mathrm{\left ( -3\mathrm{\,+\,}2 \right )\left ( -3\mathrm{\,+\,}4 \right )}}\mathrm{\,=\,}\mathrm{-6}}}$$
$$\mathrm{\mathit{C\mathrm{\,=\,}\left [ \left ( s\mathrm{\,+\,}\mathrm{4} \right )H\left ( s \right ) \right ]_{s\mathrm{\,=\,}-\mathrm{4}}\mathrm{\,=\,}\left [ \frac{s\left ( s\mathrm{\,+\,}\mathrm{1} \right )}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )\left ( s\mathrm{\,+\,}\mathrm{3} \right )} \right ]_{s\mathrm{\,=\,}-\mathrm{4}}}}$$
$$\mathrm{\mathit{\therefore C\mathrm{\,=\,}\frac{\left ( -\mathrm{4} \right )\left ( -\mathrm{4\mathrm{\,+\,}1} \right )}{\mathrm{\left ( -4\mathrm{\,+\,}2 \right )\left ( -4\mathrm{\,+\,}3 \right )}}\mathrm{\,=\,}\mathrm{6}}}$$
Therefore, the transfer function is,
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{\mathrm{1}}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )}-\frac{\mathrm{6}}{\left ( s\mathrm{\,+\,}\mathrm{3} \right )}\mathrm{\,+\,}\frac{\mathrm{6}}{\left ( s\mathrm{\,+\,}\mathrm{4} \right )} }}$$
Let,
$$\mathrm{\mathit{H_{\mathrm{1}}\left ( s \right )\mathrm{\,=\,}\frac{\mathrm{1}}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )}\mathrm{\,=\,}\frac{s^{-\mathrm{1}}}{\mathrm{1\mathrm{\,+\,}2}s^{\mathrm{-1}}}}} $$
$$\mathrm{\mathit{H_{\mathrm{2}}\left ( s \right )\mathrm{\,=\,}-\frac{\mathrm{6}}{\left ( s\mathrm{\,+\,}\mathrm{3} \right )}\mathrm{\,=\,}\frac{-\mathrm{6}s^{\mathrm{-1}}}{\mathrm{1\mathrm{\,+\,}3}s^{-\mathrm{1}}}}}$$
$$\mathrm{\mathit{H_{\mathrm{3}}\left ( s \right )\mathrm{\,=\,}\frac{\mathrm{6}}{\left ( s\mathrm{\,+\,}\mathrm{4} \right )}\mathrm{\,=\,}\frac{\mathrm{6}s^{\mathrm{-1}}}{\mathrm{1\mathrm{\,+\,}4}s^{-\mathrm{1}}}}}$$
These transfer functions can be realised as follows −
Step 1
Realising $\mathrm{\mathit{H_{\mathrm{1}}\left ( s \right )}}$ −
$$\mathrm{\mathit{H_{\mathrm{1}}\left ( s \right )\mathrm{\,=\,}\frac{Y_{\mathrm{1}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{Y_{\mathrm{1}}\left ( s \right )}{A_{\mathrm{1}}\left ( s \right )}\frac{A_{\mathrm{1}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{s^{-\mathrm{1}}}{\mathrm{1\mathrm{\,+\,}2}s^{\mathrm{-1}}}}}$$
$$\mathrm{\mathit{\Rightarrow \frac{Y_{\mathrm{1}}\left ( s \right )}{A_{\mathrm{1}}\left ( s \right )}\mathrm{\,=\,}s^{-\mathrm{1}}}}$$
$$\mathrm{\mathit{\therefore Y_{\mathrm{1}}\left ( s \right )\mathrm{\,=\,}s^{-\mathrm{1}}A_{\mathrm{1}}\left ( s \right )}}$$
And,
$$\mathrm{\mathit{\frac{A_{\mathrm{1}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{\mathrm{1}}{\mathrm{1\mathrm{\,+\,}2}s^{-\mathrm{1}}}}}$$
$$\mathrm{\mathit{\therefore A_{\mathrm{1}}\left ( s \right )\frac{}{}\mathrm{\,=\,}X\left ( s \right )-\mathrm{2}s^{-\mathrm{1}}A_{\mathrm{1}}\left ( s \right )}}$$
Step 2
Realising $\mathrm{\mathit{H_{\mathrm{2}}\left ( s \right )}}$ −
$$\mathrm{\mathit{H_{\mathrm{2}}\left ( s \right )\mathrm{\,=\,}\frac{Y_{\mathrm{2}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{Y_{\mathrm{2}}\left ( s \right )}{A_{\mathrm{2}}\left ( s \right )}\frac{A_{\mathrm{2}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{\mathrm{-6}s^{\mathrm{-1}}}{\mathrm{1\mathrm{\,+\,}3}s^{-\mathrm{1}}}}}$$
$$\mathrm{\mathit{\Rightarrow \frac{Y_{\mathrm{2}}\left ( s \right )}{A_{\mathrm{2}}\left ( s \right )}\mathrm{\,=\,}\mathrm{-6}s^{-\mathrm{1}}}}$$
$$\mathrm{\mathit{\therefore Y_{\mathrm{2}}\left ( s \right )\mathrm{\,=\,}\mathrm{-6}s^{-\mathrm{1}}A_{\mathrm{2}}\left ( s \right )}}$$
$$\mathrm{\mathit{\frac{A_{\mathrm{2}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{\mathrm{1}}{\mathrm{1\mathrm{\,+\,}3}s^{-\mathrm{1}}}}}$$
$$\mathrm{\mathit{A_{\mathrm{2}}\left ( s \right )\mathrm{\,=\,}X\left ( s \right )-\mathrm{3}s^{-\mathrm{1}}A_{\mathrm{2}}\left ( s \right )}}$$
Step 3
Realising $\mathrm{\mathit{H_{\mathrm{3}}\left ( s \right )}}$ −
$$\mathrm{\mathit{H_{\mathrm{3}}\left ( s \right )\mathrm{\,=\,}\frac{Y_{\mathrm{3}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{Y_{\mathrm{3}}\left ( s \right )}{A_{\mathrm{3}}\left ( s \right )}\frac{A_{\mathrm{3}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{\mathrm{6}s^{\mathrm{-1}}}{\mathrm{1\mathrm{\,+\,}4}s^{-\mathrm{1}}}}}$$
$$\mathrm{\mathit{\Rightarrow \frac{Y_{\mathrm{3}}\left ( s \right )}{A_{\mathrm{3}}\left ( s \right )}\mathrm{\,=\,}\mathrm{6}s^{-\mathrm{1}}}}$$
$$\mathrm{\mathit{\therefore Y_{\mathrm{3}}\left ( s \right )\mathrm{\,=\,}\mathrm{6}s^{-\mathrm{1}}A_{\mathrm{3}}\left ( s \right )}}$$
And,
$$\mathrm{\mathit{\frac{A_{\mathrm{3}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{\mathrm{1}}{\mathrm{1\mathrm{\,+\,}4}s^{-\mathrm{1}}}}}$$
$$\mathrm{\mathit{A_{\mathrm{3}}\left ( s \right )\frac{}{}\mathrm{\,=\,}X\left ( s \right )-\mathrm{4}s^{-\mathrm{1}}A_{\mathrm{3}}\left ( s \right )}}$$
Step 4
Now, the parallel form realisation of H(s) is obtained by combining the above three structures as −
- Related Articles
- Cascade Form Realization of Continuous-Time Systems
- Direct Form-I Realization of Continuous-Time Systems
- Direct Form-II Realization of Continuous-Time Systems
- Signals & Systems – Properties of Continuous Time Fourier Series
- Basic Elements to Construct the Block-Diagram of Continuous-Time Systems
- Signals and Systems – Causality and Paley-Wiener Criterion for Physical Realization
- Continuous-Time Vs Discrete-Time Sinusoidal Signal
- Signals and Systems: Time Variant and Time-Invariant Systems
- Properties of Continuous-Time Fourier Transform (CTFT)
- Convolution Property of Continuous-Time Fourier Series
- Time Shifting, Time Reversal, and Time Scaling Properties of Continuous-Time Fourier Series
- Time Differentiation and Integration Properties of Continuous-Time Fourier Series
- Signals and Systems: Linear Time-Invariant Systems
- Signals and Systems – Properties of Linear Time-Invariant (LTI) Systems
- BIBO Stability of Discrete-Time Systems
