Signals & Systems – Properties of Continuous Time Fourier Series



The Fourier series representation of a periodic signal has various important properties which are useful for various purposes during the transformation of signals from one form to another.

Consider two periodic signals ?1(?) and ?2(?) which are periodic with time period T and with Fourier series coefficients ?? and ?? respectively. With this assumption, let us proceed and check the various properties of a continuoustime Fourier series.

Linearity Property

The linearity property of continuous-time Fourier series states that, if

$$\mathrm{x_{1}(t)\overset{FS}{\leftrightarrow}C_{n}\: and\:x_{2}(t)\overset{FS}{\leftrightarrow}D_{n}}$$

Then

$$\mathrm{Ax_{1}(t)+Bx_{2}(t)\overset{FS}{\leftrightarrow}AC_{n}+BD_{n}}$$

Time Shifting Property

The time scaling property of Fourier series states that, if

$$\mathrm{x(t)\overset{FS}{\leftrightarrow}C_{n}}$$

Then

$$\mathrm{x(t-t_{0})\overset{FS}{\leftrightarrow}e^{-jn\omega_{0}t_{0}}C_{n}}$$

Time Scaling Property

The time scaling property of Fourier series states that, if

$$\mathrm{x(t)\overset{FS}{\leftrightarrow}C_{n}}$$

Then

$$\mathrm{x(at)\overset{FS}{\leftrightarrow}C_{n}\:with\:\omega_{0}\rightarrow a\omega_{0}}$$

Time Reversal Property

The time reversal property of the Fourier series states that, if

$$\mathrm{x(t)\overset{FS}{\leftrightarrow}C_{n}}$$

Then

$$\mathrm{x(-t)\overset{FS}{\leftrightarrow}C_{-n}}$$

Time Differentiation Property

The time differentiation property of continuous-time Fourier series states that, if

$$\mathrm{x(t)\overset{FS}{\leftrightarrow}C_{n}}$$

Then

$$\mathrm{\frac{dx(t)}{dt}\overset{FS}{\leftrightarrow}jn\omega_{0}t_{0}C_{n}}$$

Time Integration Property

The time integration property of continuous-time Fourier series states that, if

$$\mathrm{x(t)\overset{FS}{\leftrightarrow}C_{n}}$$

Then

$$\mathrm{\int_{-\infty}^{t}x(\tau)d\tau\overset{FS}{\leftrightarrow}\frac{C_{n}}{jn\omega_{0}};\:C_{0}=0}$$

Convolution Property

The convolution theorem or convolution property of a continuous-time Fourier series states that “the convolution of two functions in time domain is equivalent to the multiplication of their Fourier coefficients in frequency domain.” Thus, if,

$$\mathrm{x_{1}(t)\overset{FS}{\leftrightarrow}C_{n}\:\:and\:\:x_{2}(t)\overset{FS}{\leftrightarrow}D_{n}}$$

Then

$$\mathrm{x_{1}(t)*x_{2}(t)\overset{FS}{\leftrightarrow}TC_{n}D_{n}}$$

Multiplication or Modulation Property

The multiplication or modulation property of continuous-time Fourier series states that, if

$$\mathrm{x_{1}(t)\overset{FS}{\leftrightarrow}C_{n}\:\:and\:\:x_{2}(t)\overset{FS}{\leftrightarrow}D_{n}}$$

Then

$$\mathrm{x_{1}(t).x_{2}(t)\overset{FS}{\leftrightarrow}\sum_{k=-\infty}^{\infty}C_{k}D_{n-k}}$$

Conjugation Property

The conjugation property of continuous-time Fourier series states that, if

$$\mathrm{x(t)\overset{FS}{\leftrightarrow}C_{n}}$$

Then

$$\mathrm{x^*(t)\overset{FS}{\leftrightarrow}C_{-n}^{*}\:(for\:example\:x(t))}$$

Conjugate Symmetry Property

According to the conjugate symmetry property, if

$$\mathrm{x(t)\overset{FS}{\leftrightarrow}C_{n}}$$

Then

$$\mathrm{C_{-n}=C_{n}^{*}\:(for\:real\:x(t))}$$

Parseval’s Theorem

The Parseval’s theorem for Fourier series states that, if

$$\mathrm{x_{1}(t)\overset{FS}{\leftrightarrow}C_{n}\:\:and\:\:x_{2}(t)\overset{FS}{\leftrightarrow}D_{n}\:\:\:\:[for\:complex\:x_{1}(t)\& \: x_{2}(t)]}$$

Then

$$\mathrm{\frac{1}{T}\int_{t_{0}}^{t_{0}+T}x_{1}(t)x_{2}^{*}(t)(dt)=\sum_{n=-\infty}^{\infty}C_nD_{n}^{*}\:\:\:\:[for\:complex\:x_{1}(t)\& \: x_{2}(t)]}$$

And, if

$$\mathrm{x_{1}(t)=x_{2}(t)=x(t)}$$

Then, the Parseval’s identity states that,

$$\mathrm{\frac{1}{T}\int_{t_{0}}^{t_{0}+T}|x(t)|^2dt=\sum_{n=-\infty}^{\infty}|C_{n}|^2}$$

Updated on: 2021-12-03T13:09:38+05:30

9K+ Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements