- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Direct Form-I Realization of Continuous-Time Systems
Realization of Continuous-Time System
Realisation of a continuous-time LTI system means obtaining a network corresponding to the differential equation or transfer function of the system.
The transfer function of the system can be realised either by using integrators or differentiators. Due to certain drawbacks, the differentiators are not used to realise the practical systems. Therefore, only integrators are used for the realization of continuous-time systems. The adder and multipliers are other two elements which are used realise the continuous-time systems.
Direct Form-I Realization of CT Systems
The direct form-I realization is the simplest and most straight forward structure for the realization of a continuous-time system. In the direct form-I realization of a continuous time system, the differential equation or transfer function describing the system is directly implemented using the separate integrators for the input and output variables. Hence, for realising the system using direct form-I, more number of integrators are required. Therefore, it is more complex.
The direct form-I realization provides a direct relation between time domain and s-domain equations. For direct form realization of continuous-time system, the output variables are expressed in terms of all other terms in the equations.
Numerical Example
Using the direct form-I realization, realize the system described by the following transfer function −
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{Y\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{s^{\mathrm{2}}\mathrm{\,+\,}\mathrm{4}s\mathrm{\,+\,}\mathrm{3}}{s^{\mathrm{2}}\mathrm{\,+\,}\mathrm{2}s\mathrm{\,+\,}\mathrm{5}}}}$$
Solution
In order to realise the system described by the transfer function H(s), first express the numerator and denominator of H(s) in powers of 𝑠−1 as −
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{Y\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{s^{\mathrm{2}}\mathrm{\,+\,}\mathrm{4}s\mathrm{\,+\,}\mathrm{3}}{s^{\mathrm{2}}\mathrm{\,+\,}\mathrm{2}s\mathrm{\,+\,}\mathrm{5}}\mathrm{\,=\,}\frac{\mathrm{1}\mathrm{\,+\,}\mathrm{4}s^{\mathrm{-1}}\mathrm{\,+\,}\mathrm{3}s^{\mathrm{-2}}}{\mathrm{1}\mathrm{\,+\,}\mathrm{2}s^{\mathrm{-1}}\mathrm{\,+\,}\mathrm{5}s^{\mathrm{-2}}} }}$$
By cross multiplying, we have,
$$\mathrm{\mathit{Y\left ( s \right )\left [ \mathrm{1}\mathrm{\,+\,}\mathrm{2}s^{\mathrm{-1}}\mathrm{\,+\,}\mathrm{5}s^{\mathrm{-2}} \right ]\mathrm{\,=\,}X\left ( s \right )\left [ \mathrm{1}\mathrm{\,+\,}\mathrm{4}s^{\mathrm{-1}}\mathrm{\,+\,}\mathrm{3}s^{\mathrm{-2}} \right ]}}$$
$$\mathrm{\mathit{\Rightarrow Y\left ( s \right )\mathrm{\,+\,}\mathrm{2}s^{\mathrm{-1}}Y\left ( s \right )\mathrm{\,+\,}\mathrm{5}s^{\mathrm{-2}}Y\left ( s \right )\mathrm{\,=\,}X\left ( s \right )\mathrm{\,+\,}\mathrm{4}s^{\mathrm{-1}}X\left ( s \right )\mathrm{\,+\,}\mathrm{3}s^{\mathrm{-2}}X\left ( s \right )}}$$
$$\mathrm{\mathit{\Rightarrow Y\left ( s \right )\mathrm{\,=\,}X\left ( s \right )\mathrm{\,+\,}\mathrm{4}s^{\mathrm{-1}}X\left ( s \right )\mathrm{\,+\,}\mathrm{3}s^{\mathrm{-2}}X\left ( s \right )-\mathrm{2}s^{\mathrm{-1}}Y\left ( s \right )-\mathrm{5}s^{\mathrm{-2}}Y\left ( s \right )}}$$
Let,
$$\mathrm{\mathit{X\left ( s \right )\mathrm{\,+\,}\mathrm{4}s^{\mathrm{-1}}X\left ( s \right )\mathrm{\,+\,}\mathrm{3}s^{\mathrm{-2}}X\left ( s \right )\mathrm{\,=\,}A\left ( s \right)}}$$
$$\mathrm{\mathit{\therefore Y\left ( s \right )\mathrm{\,=\,}A\left ( s \right )-\mathrm{2}s^{\mathrm{-1}}Y\left ( s \right )-\mathrm{5}s^{\mathrm{-2}}Y\left ( s \right )}}$$
This equation can be realised as follows −
Step 1
Realise A(s) as −
Step 2
Realise Y(s) in terms of A(s) as −
Step 3
Combine the above two results to get the direct form-I realisation as −
- Related Articles
- Direct Form-II Realization of Continuous-Time Systems
- Cascade Form Realization of Continuous-Time Systems
- Parallel Form Realization of Continuous-Time Systems
- Signals & Systems – Properties of Continuous Time Fourier Series
- Basic Elements to Construct the Block-Diagram of Continuous-Time Systems
- Signals and Systems – Causality and Paley-Wiener Criterion for Physical Realization
- Continuous-Time Vs Discrete-Time Sinusoidal Signal
- Signals and Systems: Time Variant and Time-Invariant Systems
- Properties of Continuous-Time Fourier Transform (CTFT)
- Convolution Property of Continuous-Time Fourier Series
- Time Shifting, Time Reversal, and Time Scaling Properties of Continuous-Time Fourier Series
- Time Differentiation and Integration Properties of Continuous-Time Fourier Series
- Using direct IO with ecryptfs and similar stackable file systems
- Signals and Systems: Linear Time-Invariant Systems
- Signals and Systems – Properties of Linear Time-Invariant (LTI) Systems
