- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
The roots of the equation $x^{2} -3x-m( m+3) =0$, where m is a constant, are:
$( A) m, m+3$
$( B)-m, m+3$
$( C)m, -(m+3)$
$( D)-m,-(m+3)$
Given: equation $x^{2} -3x-m( m+3) =0$
To do: To find out the roots of the given equation.
Solution:
$x^{2} -3x-m( m+3) =0$
$\Rightarrow x^{2} -( m+3) x+mx-m( m+3) =0$
$\Rightarrow x( x-( m+3)) +m( x-( m+3) =0$
$\Rightarrow ( x+m)( x-( m+3)) =0$
If $( x+m) =0$
$\Rightarrow x=-m$
If $x-( m+3) =0$
$\Rightarrow x=m+3$
$\therefore \ x=-m,m+3$
$\therefore$ Option $( A)$ is correct.
Advertisements