- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ a \cos ^{3} \theta+3 a \cos \theta \sin ^{2} \theta=m, a \sin ^{3} \theta+3 a \cos ^{2} \theta \sin \theta=n $, prove that $ (m+n)^{2 / 3}+(m-n)^{2 / 3}=2 a^{2 / 3} $
Given:
\( a \cos ^{3} \theta+3 a \cos \theta \sin ^{2} \theta=m, a \sin ^{3} \theta+3 a \cos ^{2} \theta \sin \theta=n \)
To do:
We have to prove that \( (m+n)^{2 / 3}+(m-n)^{2 / 3}=2 a^{2 / 3} \).
Solution:
We know that,
$\sin^2 A+\cos^2 A=1$
$\operatorname{cosec}^2 A-\cot^2 A=1$
$\sec^2 A-\tan^2 A=1$
$\cot A=\frac{\cos A}{\sin A}$
$\tan A=\frac{\sin A}{\cos A}$
$\operatorname{cosec} A=\frac{1}{\sin A}$
$\sec A=\frac{1}{\cos A}$
Therefore,
$a \cos ^{3} \theta+3 a \cos \theta \sin ^{2} \theta=m$.........(i)
$a \sin ^{3} \theta+3 a \cos ^{2} \theta \sin \theta=n$.........(ii)
Adding (i) and (ii), we get,
$m+n=a \cos ^{3} \theta+3 a \cos \theta \sin ^{2} \theta+a \sin ^{3} \theta+3 a \cos ^{2} \theta \sin \theta$
$=a[\cos ^{3} \theta+3 \cos ^{2} \theta \sin \theta+3 \cos \theta \sin ^{2} \theta+\sin ^{3} \theta]$ $=a(\cos \theta+\sin \theta)^{3}$ (Since $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$)
Subtracting (ii) from (i), we get,
$m-n=a \cos ^{3} \theta+3 a \cos \theta \sin ^{2} \theta-a\sin ^{3} \theta-3 a \cos ^{2} \theta \sin \theta$
$=a[\cos ^{3} \theta-3 \cos ^{2} \theta \sin \theta+3 \cos \theta \sin ^{2} \theta-\sin ^{3} \theta]$
$=a(\cos \theta-\sin \theta)^{3}$ [Since $(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$]
This implies,
$(m+n)^{\frac{2}{3}}+(m-n)^{\frac{2}{3}}=[a(\cos \theta+\sin \theta)^{3}]^{\frac{2}{3}}+[a(\cos \theta-\sin \theta)^{3}]^{\frac{2}{3}}$
$=a^{\frac{2}{3}}(\cos \theta+\sin \theta)^{2}+a^{\frac{2}{3}}(\cos \theta-\sin \theta)^{2}$
$=a^{\frac{2}{3}}[(\cos \theta+\sin \theta)^{2}+(\cos \theta-\sin \theta)^{2}]$
$=a^{\frac{2}{3}}[(\cos ^{2} \theta+\sin ^{2} \theta+2 \sin \theta \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta-2 \sin \theta \cos \theta]$
$=a^{\frac{2}{3}}[2(\cos ^{2} \theta+\sin ^{2} \theta)]$
$=a^{\frac{2}{3}}(2 \times 1)$
$=2 a^{\frac{2}{3}}$
Hence proved.