If $x=1,\ y=2$ and $z=5$, find the value of $x^{2}+y^{2}+z^{2}$.
Give: $x=1,\ y=2$ and $z=5$.
To do: To find the value of $x^{2}+y^{2}+z^{2}$.
Solution:
$x^{2}+y^{2}+z^{2}$
$=1^2+2^2+5^2$
$=1+4+25$
$=30$
Thus, the value of $x^{2}+y^{2}+z^{2}=30$.
- Related Articles
- f $x=1,\ y=2$ and $z=5$, find the value of $2x^{2}-3y^{2}+z^{2}$.
- Subtract $3 x y+5 y z-7 z x$ from $5 x y-2 y z-2 z x+10 x y z$.
- Verify that \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- Factorise:(i) \( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)(ii) \( 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \)
- If $2^x \times 3^y \times 5^z = 2160$, find $x, y$ and $z$. Hence, compute the value of $3^x \times 2^{-y} \times 5^{-z}$.
- Simplify:$(x^2 + y^2 - z^2)^2 - (x^2 - y^2 + z^2)^2$
- Add: $20 x^{2} y^{2} z and -10 x^{2} y^{2} z$
- Find the product of $(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$ and verify the result for ; $x=2, y=3$ and $z=-1$
- Simplify:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- Simplify each of the following expressions:\( (x+y-2 z)^{2}-x^{2}-y^{2}-3 z^{2}+4 x y \)
- Multiply the monomial by the binomial and find the value of each for $x = -1, y = 0.25$ and $z =0.05$:(i) $15y^2 (2 - 3x)$(ii) $-3x (y^2 + z^2)$(iii) $z^2 (x - y)$(iv) $xz (x^2 + y^2)$
- Factorise:\( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)
- If \( 2^{x}=3^{y}=12^{z} \), show that \( \frac{1}{z}=\frac{1}{y}+\frac{2}{x} \).
- If \( 3^{x}=5^{y}=(75)^{z} \), show that \( z=\frac{x y}{2 x+y} \).
- If $x=1,\ y=2$ and $z=5$, find the value of $xy+yz-zx$.
Kickstart Your Career
Get certified by completing the course
Get Started