- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Multiply:$x^2 +y^2 + z^2 - xy + xz + yz$ by $x + y - z$
Given:
$x^2 +y^2 + z^2 - xy + xz + yz$ and $x + y - z$
To do:
We have to multiply the given expressions.
Solution:
We know that,
$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$
Therefore,
$(x^2 + y^2 + z^2 - xy + yz + zx) \times (x + y - z) = [x^2 + y^2 + (-z)^2 - x \times y - y \times (-z) - (-z) \times x] \times [x + y + (-z)]$
$=x^3 +y^3 - z^3 + 3xyz$
Hence, $(x^2 + y^2 + z^2 - xy + yz + zx) \times (x + y - z) = x^3 +y^3 - z^3 + 3xyz$.
Advertisements