- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the product of $(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$ and verify the result for ; $x=2, y=3$ and $z=-1$
Given :
The given expression is $(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$.
To do :
We have to find the product of the given expression and verify the result for $x=2, y=3$ and $z=-1$.
Solution :
$(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$
$(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z) = (-3 \times \frac{4}{9}\times \frac{-27}{2}) \times (x \times x^2 \times x) \times (y \times y^2) \times (z \times z \times z)$
$ = (-3 \times 2 \times -3) \times x^{1+2+1} \times y^{1+2} \times z^{1+1+1}$
$ = 18x^4 y^3 z^3$
If $x = 2, y = 3$ and $z = -1$ then $(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z) = $
$ = 18x^4 y^3 z^3 = 18 (2)^4 (3)^3 (-1)^3$
$ = 18(16)(9)(-1)$
$= -2592$.
Therefore, the value of $(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$ at $x = 2, y = 3$ and $z = -1$ is $-2592$