Verify that $ x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] $
To do:
We have to verify that \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \).
Solution:
We know that,
$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$
Therefore,
LHS $=x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)(x^2 + y^2 + z^2-xy-yz-zx)$
$= \frac{1}{2}(x+ y+ z)[2(x^2 + y^2 + z^2 - xy- yz - zx)]$
$= \frac{1}{2}(x+ y+ z)(2x^2 + 2y^2 + 2z^2 - 2xy- 2yz - 2zx)$
$= \frac{1}{2}(x+y+z)(x^2 + x^2 + y^2 + y^2 + z^2 + z^2 - 2xy - 2yz - 2zx)$
$= \frac{1}{2}(x+y+ z)(x^2 + y^2 - 2xy+ y^2 + z^2 - 2yz+ x^2 + z^2 -2zx)$
$= \frac{1}{2}(x+y+z)[(x-y)^2 + (y-z)^2 + (z-x)^2]$
$=$ RHS
Hence, $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)[(x-y)^2 + (y-z)^2 + (z-x)^2]$.
- Related Articles
- Show that:\( \left(\frac{a^{x+1}}{a^{y+1}}\right)^{x+y}\left(\frac{a^{y+2}}{a^{z+2}}\right)^{y+z}\left(\frac{a^{z+3}}{a^{x+3}}\right)^{z+x}=1 \)
- Subtract $3 x y+5 y z-7 z x$ from $5 x y-2 y z-2 z x+10 x y z$.
- Simplify:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- Find the following products:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- Simplify each of the following expressions:\( (x+y+z)^{2}+\left(x+\frac{y}{2}+\frac{z}{3}\right)^{2}-\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}\right)^{2} \)
- Find the product of $(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$ and verify the result for ; $x=2, y=3$ and $z=-1$
- If \( 3^{x}=5^{y}=(75)^{z} \), show that \( z=\frac{x y}{2 x+y} \).
- If \( x+y+z=0 \), show that \( x^{3}+y^{3}+z^{3}=3 x y z \).
- Find the following products:\( \frac{-4}{27} x y z\left[\frac{9}{2} x^{2} y z-\frac{3}{4} x y z^{2}\right] \)
- If \( 2^{x}=3^{y}=12^{z} \), show that \( \frac{1}{z}=\frac{1}{y}+\frac{2}{x} \).
- Verify associativity of addition of rational numbers i.e., $(x + y) + z = x + (y + z)$, when:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- Verify: $x\times(y\times z)=(x\times y)\times z$, where $x=\frac{1}{2},\ y=\frac{1}{3}$ and $z=\frac{1}{4}$.
- Factorize each of the following expressions:\( \left(\frac{x}{2}+y+\frac{z}{3}\right)^{3}+\left(\frac{x}{3}-\frac{2 y}{3}+z\right)^{3} +\left(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3}\right)^{3} \)
- Simplify each of the following expressions:\( (x+y-2 z)^{2}-x^{2}-y^{2}-3 z^{2}+4 x y \)
- Factorise:(i) \( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)(ii) \( 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \)
Kickstart Your Career
Get certified by completing the course
Get Started