- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ 3^{x}=5^{y}=(75)^{z} $, show that $ z=\frac{x y}{2 x+y} $.
Given:
\( 3^{x}=5^{y}=(75)^{z} \)
To do:
We have to show that \( z=\frac{x y}{2 x+y} \).
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
Let $3^{x}=5^{y}=75^{z}=k$
This implies,
$3=k^{\frac{1}{x}}, 5=k^{\frac{1}{y}}$ and $75=k^{\frac{1}{z}}$
$75=3\times25=3\times5^2$
$\Rightarrow 3 \times 5^{2}=k^{\frac{1}{z}}$
$\Rightarrow k^{\frac{1}{x}} \times k^{\frac{2}{y}}=k^{\frac{1}{z}}$
$\Rightarrow k^{\frac{1}{x}+\frac{2}{y}}=k^{\frac{1}{z}}$
Comparing both sides, we get,
$\Rightarrow \frac{1}{x}+\frac{2}{y}=\frac{1}{z}$
$\Rightarrow \frac{y+2 x}{x y}=\frac{1}{z}$
$\Rightarrow z=\frac{x y}{2 x+y}$
Hence proved.
- Related Articles
- If \( x+y+z=0 \), show that \( x^{3}+y^{3}+z^{3}=3 x y z \).
- Verify that \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- Subtract $3 x y+5 y z-7 z x$ from $5 x y-2 y z-2 z x+10 x y z$.
- If \( 2^{x}=3^{y}=12^{z} \), show that \( \frac{1}{z}=\frac{1}{y}+\frac{2}{x} \).
- If $x+y+z = 0$ show that $x^{3}+y^{3}+z^{3}=3xyz$
- If \( 2^{x}=3^{y}=6^{-z} \), show that \( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0 \).
- Simplify:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- If \( a^{x}=b^{y}=c^{z} \) and \( b^{2}=a c \), then show that \( y=\frac{2 z x}{z+x} \).
- Show that:\( \left(\frac{a^{x+1}}{a^{y+1}}\right)^{x+y}\left(\frac{a^{y+2}}{a^{z+2}}\right)^{y+z}\left(\frac{a^{z+3}}{a^{x+3}}\right)^{z+x}=1 \)
- Verify associativity of addition of rational numbers i.e., $(x + y) + z = x + (y + z)$, when:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- Verify the property: $x \times(y + z) = x \times y + x \times z$ by taking:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- Find the following products:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- Find the following products:\( \frac{-4}{27} x y z\left[\frac{9}{2} x^{2} y z-\frac{3}{4} x y z^{2}\right] \)
- If $2^x \times 3^y \times 5^z = 2160$, find $x, y$ and $z$. Hence, compute the value of $3^x \times 2^{-y} \times 5^{-z}$.
- Verify the property \( x \times(y+z)=(x \times y)+(x \times z) \) for the given values of \( x,\ y \) and \( z \).\( x=\frac{-5}{2}, y=\frac{1}{2} \) and \( z=-\frac{10}{7} \)>

Advertisements