If $2^x \times 3^y \times 5^z = 2160$, find $x, y$ and $z$. Hence, compute the value of $3^x \times 2^{-y} \times 5^{-z}$.
Given:
$2^x \times 3^y \times 5^z = 2160$
To do:
We have to find $x, y$ and $z$ and compute the value of $3^x \times 2^{-y} \times 5^{-z}$.
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
Prime factorisation of 2160 is,
$2160=2^4\times3^3\times5^1$
This implies,
$2^x \times 3^y \times 5^z=2^4\times3^3\times5^1$
Comparing both sides, we get,
$x=4, y=3, z=1$
This implies,
$3^x \times 2^{-y} \times 5^{-z}=3^{4}\times2^{-3}\times5^{-1}$
$=\frac{3^4}{2^3\times5^1}$
$=\frac{81}{8\times5}$
$=\frac{81}{40}$
The values of $x, y$ and $z$ are 4, 3 and 1 respectively. The value of $3^x \times 2^{-y} \times 5^{-z}$ is $\frac{81}{40}$.
- Related Articles
- Verify: $x\times(y\times z)=(x\times y)\times z$, where $x=\frac{1}{2},\ y=\frac{1}{3}$ and $z=\frac{1}{4}$.
- Verify the property \( x \times(y+z)=(x \times y)+(x \times z) \) for the given values of \( x,\ y \) and \( z \).\( x=\frac{-5}{2}, y=\frac{1}{2} \) and \( z=-\frac{10}{7} \)>
- Subtract $3 x y+5 y z-7 z x$ from $5 x y-2 y z-2 z x+10 x y z$.
- Verify the property: $x \times (y \times z) = (x \times y) \times z$ by taking:(i) \( x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} \)(ii) \( x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \)(iii) \( x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \)(iv) \( x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} \)
- Verify the property: $x \times(y + z) = x \times y + x \times z$ by taking:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- Find the products of the following monomials.a. \( (-6) x^{2} \times 7 x y \)b. \( 2 a b \times(-6) a b \)c. \( \left(-4 x^{2} y^{2}\right) \times 3 x^{2} y^{2} \)d. \( 9 x y z \times 2 z^{3} \)
- Find the following product.\( (0.5 x) \times\left(\frac{1}{3} x y^{2} z^{4}\right) \times\left(-24 x^{2} y z\right) \)
- Simplify:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- Find the following product.\( \left(\frac{-7}{5} x y^{2} z\right) \times\left(\frac{13}{3} x^{2} y z^{2}\right) \)
- Verify that \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- If \( 3^{x}=5^{y}=(75)^{z} \), show that \( z=\frac{x y}{2 x+y} \).
- Find the following product.$\frac{1}{2} x y \times \frac{2}{3} x^{2} y z^{2}$
- If $x=1,\ y=2$ and $z=5$, find the value of $x^{2}+y^{2}+z^{2}$.
- Simplify: \( (0.1 x) \times\left(0.29 y^{2}+0.3 y z-0.6 z x\right) \)
- If \( x+y+z=0 \), show that \( x^{3}+y^{3}+z^{3}=3 x y z \).
Kickstart Your Career
Get certified by completing the course
Get Started