Subtract $3 x y+5 y z-7 z x$ from $5 x y-2 y z-2 z x+10 x y z$.
Given :
The given terms are $3 x y+5 y z-7 z x$ and $5 x y-2 y z-2 z x+10 x y z$.
To do :
We have to subtract $3 x y+5 y z-7 z x$ from $5 x y-2 y z-2 z x+10 x y z$.
Solution :
$(5xy-2yz-2zx+10xyz) - (3xy+5yz-7zx) = (5xy-3xy) + (-2yz-5yz) + (-2zx-(-7zx)) + 10xyz$
$= 2xy+(-7yz)+(-2xz+7xz)+10xyz$
$=2xy-7yz+5zx+10xyz$
Therefore, the resultant term is $2xy-7yz+5zx+10xyz$.
- Related Articles
- Subtract x²-y²+z² from x²-y²- z²
- Verify that \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- Simplify:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- If \( 3^{x}=5^{y}=(75)^{z} \), show that \( z=\frac{x y}{2 x+y} \).
- Factorise:(i) \( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)(ii) \( 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \)
- Factorise:\( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)
- If \( x+y+z=0 \), show that \( x^{3}+y^{3}+z^{3}=3 x y z \).
- Verify the property \( x \times(y+z)=(x \times y)+(x \times z) \) for the given values of \( x,\ y \) and \( z \).\( x=\frac{-5}{2}, y=\frac{1}{2} \) and \( z=-\frac{10}{7} \)>
- Add: $20 x^{2} y^{2} z and -10 x^{2} y^{2} z$
- Verify associativity of addition of rational numbers i.e., $(x + y) + z = x + (y + z)$, when:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- If $2^x \times 3^y \times 5^z = 2160$, find $x, y$ and $z$. Hence, compute the value of $3^x \times 2^{-y} \times 5^{-z}$.
- Simplify:$(x^2 + y^2 - z^2)^2 - (x^2 - y^2 + z^2)^2$
- Factorise : \( 27 x^{3}+y^{3}+z^{3}-9 x y z \)
- Multiply:$x^2 +y^2 + z^2 - xy + xz + yz$ by $x + y - z$
- Simplify each of the following expressions:\( (x+y-2 z)^{2}-x^{2}-y^{2}-3 z^{2}+4 x y \)
Kickstart Your Career
Get certified by completing the course
Get Started