If $x=1,\ y=2$ and $z=5$, find the value of $3x-2y+4z$.
Given: If $x=1,\ y=2$ and $z=5$.
To do: To find the value of $3x-2y+4z$.
Solution:
$3x-2y+4z$
$=3(1)-2(2)+4(5)$
$=3-4+20$
$=19$
Thus, the value of $3x-2y+4z=19$.
- Related Articles
- If $x=1,\ y=2$ and $z=5$, find the value of $x^{2}+y^{2}+z^{2}$.
- If $x=1,\ y=2$ and $z=5$, find the value of $xy+yz-zx$.
- f $x=1,\ y=2$ and $z=5$, find the value of $2x^{2}-3y^{2}+z^{2}$.
- If $2^x \times 3^y \times 5^z = 2160$, find $x, y$ and $z$. Hence, compute the value of $3^x \times 2^{-y} \times 5^{-z}$.
- Multiply the monomial by the binomial and find the value of each for $x = -1, y = 0.25$ and $z =0.05$:(i) $15y^2 (2 - 3x)$(ii) $-3x (y^2 + z^2)$(iii) $z^2 (x - y)$(iv) $xz (x^2 + y^2)$
- Factorize each of the following expressions:$(3x - 2y)^3 + (2y - 4z)^3 + (4z - 3x)^3$
- Subtract $3 x y+5 y z-7 z x$ from $5 x y-2 y z-2 z x+10 x y z$.
- If the value of y =1 then find the value of $2y^3 + 3y^2 + y - 3$.
- If the distances of $P(x,\ y)$ from $A(5,\ 1)$ and $B(-1,\ 5)$ are equal, then prove that $3x = 2y$.
- Solve the following system of equations:$\frac{2}{3x+2y} +\frac{3}{3x-2y}=\frac{17}{5}$$\frac{5}{3x+2y}+\frac{1}{3x-2y}=2$
- Find the value of $x$:$3x\ -\ 1\ =\ \frac{x}{5}$
- Solve the following system of equations:$\frac{1}{2(x+2y)} +\frac{5}{3(3x-2y)}=\frac{-3}{2}$$\frac{5}{4(x+2y)}-\frac{3}{5(3x-2y)}=\frac{61}{60}$
- Find the product of $(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$ and verify the result for ; $x=2, y=3$ and $z=-1$
- Verify the property \( x \times(y+z)=(x \times y)+(x \times z) \) for the given values of \( x,\ y \) and \( z \).\( x=\frac{-5}{2}, y=\frac{1}{2} \) and \( z=-\frac{10}{7} \)>
- If \( 3^{x}=5^{y}=(75)^{z} \), show that \( z=\frac{x y}{2 x+y} \).
Kickstart Your Career
Get certified by completing the course
Get Started