If $x=1,\ y=2$ and $z=5$, find the value of $xy+yz-zx$.
Given: $x=1,\ y=2$ and $z=5$
To do: To find the value of $xy+yz-zx$.
Solution:
$xy+yz-zx$
$=1\times2+2\times5-5\times1$
$=2+10-5$
$12-5$
$=7$
- Related Articles
- If $x + y + z = 8$ and $xy + yz+ zx = 20$, find the value of $x^3 + y^3 + z^3 – 3xyz$.
- If $x=1,\ y=2$ and $z=5$, find the value of $x^{2}+y^{2}+z^{2}$.
- Multiply:$x^2 +y^2 + z^2 - xy + xz + yz$ by $x + y - z$
- If $x=1,\ y=2$ and $z=5$, find the value of $3x-2y+4z$.
- If $x + y = 4$ and $xy = 2$, find the value of $x^2 + y^2$.
- Find the value of the expression $2 xy+3 xz-xyz$, if $x=-1, y=0, z=3$.
- f $x=1,\ y=2$ and $z=5$, find the value of $2x^{2}-3y^{2}+z^{2}$.
- If $x – y = 7$ and $xy = 9$, find the value of $x^2+y^2$.
- If $2^x \times 3^y \times 5^z = 2160$, find $x, y$ and $z$. Hence, compute the value of $3^x \times 2^{-y} \times 5^{-z}$.
- If $x^2 + y^2 = 29$ and $xy = 2$, find the value of(i) $x + y$(ii) $x - y$(iii) $x^4 + y^4$
- Find the product of $-3y (xy +y^2)$ and find its value for $x = 4$, and $y = 5$.
- Solve $-2(xy^2-x^2y)+5-xy$ when $x=-5$ and $y=5$.
- Construct a triangle $XYZ$ in which $\angle Y = 30^o , \angle Z = 90^o$ and $XY +YZ + ZX = 11\ cm$.
- Subtract $3 x y+5 y z-7 z x$ from $5 x y-2 y z-2 z x+10 x y z$.
- In \( \triangle \mathrm{XYZ} \), the bisector of \( \angle X \) intersects \( Y Z \) at \( M \). If \( X Y=8, X Z=6 \) and \( M Z=4.8 \), find YZ.
Kickstart Your Career
Get certified by completing the course
Get Started