Subtract:
(5 a-13 y+2 z) from (9 a-3 y+12 z)
To do: Subtract $(5 a-13 y+2 z) \ from \ (9 a-3 y+12 z)$
Solution:
Subtract: $( 5 a − 13 y + 2 z )$ from $( 9 a − 3 y + 12 z )$ means.
$( 9 a − 3 y + 12 z ) - ( 5 a − 13 y + 2 z )$
= $9 a − 3 y + 12 z - 5 a + 13 y - 2 z$
= $4a + 10y + 10z$
So $( 9 a − 3 y + 12 z ) - ( 5 a − 13 y + 2 z ) = 4a + 10y + 10z$
- Related Articles
- Subtract $3 x y+5 y z-7 z x$ from $5 x y-2 y z-2 z x+10 x y z$.
- Subtract x²-y²+z² from x²-y²- z²
- Factorise:\( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)
- Verify the property: $x \times(y + z) = x \times y + x \times z$ by taking:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- Verify the property: $x \times (y \times z) = (x \times y) \times z$ by taking:(i) \( x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} \)(ii) \( x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \)(iii) \( x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \)(iv) \( x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} \)
- Simplify:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- Verify that \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- Factorise:(i) \( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)(ii) \( 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \)
- Factorise : \( 27 x^{3}+y^{3}+z^{3}-9 x y z \)
- If \( 3^{x}=5^{y}=(75)^{z} \), show that \( z=\frac{x y}{2 x+y} \).
- Find the following products:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- Find the following product.\( \left(\frac{-7}{5} x y^{2} z\right) \times\left(\frac{13}{3} x^{2} y z^{2}\right) \)
- If \( 2^{x}=3^{y}=12^{z} \), show that \( \frac{1}{z}=\frac{1}{y}+\frac{2}{x} \).
- If $2^x \times 3^y \times 5^z = 2160$, find $x, y$ and $z$. Hence, compute the value of $3^x \times 2^{-y} \times 5^{-z}$.
- Show that:\( \left(\frac{a^{x+1}}{a^{y+1}}\right)^{x+y}\left(\frac{a^{y+2}}{a^{z+2}}\right)^{y+z}\left(\frac{a^{z+3}}{a^{x+3}}\right)^{z+x}=1 \)
Kickstart Your Career
Get certified by completing the course
Get Started