Verify the property: $x \times (y \times z) = (x \times y) \times z$ by taking:
(i) $ x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} $
(ii) $ x=0, y=\frac{-3}{5}, z=\frac{-9}{4} $
(iii) $ x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} $
(iv) $ x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} $
To do:
We have to verify $x \times (y \times z) = (x \times y) \times z$.
Solution:
(i) LHS $=x \times (y \times z)$
$=\frac{-7}{3} \times(\frac{12}{5} \times \frac{4}{9})$
$=\frac{-7}{3} \times(\frac{4 \times 4}{5 \times 3})$
$=\frac{-7}{3} \times \frac{16}{15}$
$=\frac{-7 \times 16}{3 \times 15}$
$=\frac{-112}{45}$
RHS $=(x \times y) \times z$
$=(\frac{-7}{3} \times \frac{12}{5}) \times \frac{4}{9}$
$=\frac{-7 \times 4}{1 \times 5} \times \frac{4}{9}$
$=\frac{-28}{5} \times \frac{4}{9}$
$=\frac{-28\times4}{5\times9}$
$=\frac{-112}{45}$
LHS $=$ RHS
Therefore,
$x \times (y \times z) = (x \times y) \times z$.
(ii) LHS $=x \times (y \times z)$
$=0 \times(\frac{-3}{5} \times \frac{-9}{4})$
$=0 \times \frac{(-3) \times(-9)}{5 \times 4}$
$=0 \times \frac{27}{20}$
$=0$
RHS $=(x \times y) \times z$
$=(0 \times \frac{-3}{5}) \times \frac{-9}{4}$
$=0 \times \frac{-9}{4}$
$=0$
LHS $=$ RHS
Therefore,
$x \times (y \times z) = (x \times y) \times z$.
(iii) LHS $=x \times (y \times z)$
$=\frac{1}{2} \times(\frac{5}{-4} \times \frac{-7}{5})$
$=\frac{1}{2} \times(\frac{5 \times(-7)}{-4 \times 5})$
$=\frac{1}{2} \times(\frac{-7}{-4})$
$=\frac{1}{2} \times \frac{7}{4}$
$=\frac{1 \times 7}{2 \times 4}$
$=\frac{7}{8}$
RHS $=(x \times y) \times z$
$=(\frac{1}{2} \times \frac{5}{-4}) \times \frac{-7}{5}$
$=\frac{1 \times 5}{2 \times(-4)} \times \frac{-7}{5}$
$=\frac{5}{-8} \times \frac{-7}{5}$
$=\frac{5\times-7}{-8\times5}$
$=\frac{7}{8}$
LHS $=$ RHS
Therefore,
$x \times (y \times z) = (x \times y) \times z$.
(iv) LHS $=x \times (y \times z)$
$=\frac{5}{7} \times(\frac{-12}{13} \times \frac{-7}{18})$
$=\frac{5}{7} \times(\frac{-12 \times(-7)}{13 \times 18})$
$=\frac{5}{7} \times(\frac{14}{39})$
$=\frac{5}{7} \times \frac{14}{39}$
$=\frac{5 \times 14}{7 \times 39}$
$=\frac{10}{39}$
RHS $=(x \times y) \times z$
$=(\frac{5}{7} \times \frac{-12}{13}) \times \frac{-7}{18}$
$=\frac{5 \times -12}{7 \times13} \times \frac{-7}{18}$
$=\frac{-60}{91} \times \frac{-7}{18}$
$=\frac{-60\times(-7)}{91\times18}$
$=\frac{70}{273}$
$=\frac{10}{39}$
LHS $=$ RHS
Therefore,
$x \times (y \times z) = (x \times y) \times z$.
- Related Articles
- Verify the property: $x \times(y + z) = x \times y + x \times z$ by taking:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- Verify associativity of addition of rational numbers i.e., $(x + y) + z = x + (y + z)$, when:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- Verify: $x\times(y\times z)=(x\times y)\times z$, where $x=\frac{1}{2},\ y=\frac{1}{3}$ and $z=\frac{1}{4}$.
- Verify the property \( x \times(y+z)=(x \times y)+(x \times z) \) for the given values of \( x,\ y \) and \( z \).\( x=\frac{-5}{2}, y=\frac{1}{2} \) and \( z=-\frac{10}{7} \)>
- Verify the property: $x \times y = y \times x$ by taking:(i) \( x=-\frac{1}{3}, y=\frac{2}{7} \)(ii) \( x=\frac{-3}{5}, y=\frac{-11}{13} \)(iii) \( x=2, y=\frac{7}{-8} \)(iv) \( x=0, y=\frac{-15}{8} \)
- Find the following product.\( \left(\frac{-7}{5} x y^{2} z\right) \times\left(\frac{13}{3} x^{2} y z^{2}\right) \)
- Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- Subtract:(i) $-5xy$ from $12xy$(ii) $2a^2$ from $-7a^2$(iii) \( 2 a-b \) from \( 3 a-5 b \)(iv) \( 2 x^{3}-4 x^{2}+3 x+5 \) from \( 4 x^{3}+x^{2}+x+6 \)(v) \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) from \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)(vi) \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) from \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)(vii) \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) from \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)(viii) \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \) from \( \frac{3}{5} b c-\frac{4}{5} a c \)
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Find the following products:\( \frac{-4}{27} x y z\left[\frac{9}{2} x^{2} y z-\frac{3}{4} x y z^{2}\right] \)
- If \( 2^{x}=3^{y}=12^{z} \), show that \( \frac{1}{z}=\frac{1}{y}+\frac{2}{x} \).
- Find the following products:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- Find the following products:(i) $(x + 4) (x + 7)$(ii) $(x - 11) (x + 4)$(iii) $(x + 7) (x - 5)$(iv) $(x - 3) (x - 2)$(v) $(y^2 - 4) (y^2 - 3)$(vi) $(x + \frac{4}{3}) (x + \frac{3}{4})$(vii) $(3x + 5) (3x + 11)$(viii) $(2x^2 - 3) (2x^2 + 5)$(ix) $(z^2 + 2) (z^2 - 3)$(x) $(3x - 4y) (2x - 4y)$(xi) $(3x^2 - 4xy) (3x^2 - 3xy)$(xii) $(x + \frac{1}{5}) (x + 5)$(xiii) $(z + \frac{3}{4}) (z + \frac{4}{3})$(xiv) $(x^2 + 4) (x^2 + 9)$(xv) $(y^2 + 12) (y^2 + 6)$(xvi) $(y^2 + \frac{5}{7}) (y^2 - \frac{14}{5})$(xvii) $(p^2 + 16) (p^2 - \frac{1}{4})$
- Factorize each of the following expressions:\( \left(\frac{x}{2}+y+\frac{z}{3}\right)^{3}+\left(\frac{x}{3}-\frac{2 y}{3}+z\right)^{3} +\left(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3}\right)^{3} \)
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
Kickstart Your Career
Get certified by completing the course
Get Started