Factorise : $ 27 x^{3}+y^{3}+z^{3}-9 x y z $
Given:
\( 27 x^{3}+y^{3}+z^{3}-9 x y z \)
To do:
We have to factorize the given expression.
Solution:
We know that,
$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$
Therefore,
$27 x^{3}+y^{3}+z^{3}-9 x y z = (3x)^3 + (y)^3 + (z)^3 - 3(3x)(y)(z)$
$= (3x + y + z)[(3x)^2 + y^2 + z^2 - (3x)(y) - (y)(z) - (z)(3x)]$
$= (3x + y + z)(9x^2 + y^2 + z^2 - 3xy - yz - 3xz)$
Hence, $27 x^{3}+y^{3}+z^{3}-9 x y z =(3x + y + z)(9x^2 + y^2 + z^2 - 3xy - yz - 3xz)$.
- Related Articles
- If \( x+y+z=0 \), show that \( x^{3}+y^{3}+z^{3}=3 x y z \).
- Verify that \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- Find the following products:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- If $x+y+z = 0$ show that $x^{3}+y^{3}+z^{3}=3xyz$
- Factorize each of the following expressions:\( \frac{1}{27} x^{3}-y^{3}+125 z^{3}+5 x y z \)
- Simplify:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- Find the product of $(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$ and verify the result for ; $x=2, y=3$ and $z=-1$
- Subtract $3 x y+5 y z-7 z x$ from $5 x y-2 y z-2 z x+10 x y z$.
- Find the following products:\( \frac{-4}{27} x y z\left[\frac{9}{2} x^{2} y z-\frac{3}{4} x y z^{2}\right] \)
- Factorise:\( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)
- If \( 3^{x}=5^{y}=(75)^{z} \), show that \( z=\frac{x y}{2 x+y} \).
- If $x + y + z = 8$ and $xy + yz+ zx = 20$, find the value of $x^3 + y^3 + z^3 – 3xyz$.
- Factorise:(i) \( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)(ii) \( 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \)
- Factorize each of the following expressions:\( \left(\frac{x}{2}+y+\frac{z}{3}\right)^{3}+\left(\frac{x}{3}-\frac{2 y}{3}+z\right)^{3} +\left(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3}\right)^{3} \)
- Verify associativity of addition of rational numbers i.e., $(x + y) + z = x + (y + z)$, when:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
Kickstart Your Career
Get certified by completing the course
Get Started