- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Mechanical Power Developed by a Synchronous Motor
Consider an under-excited (i.e., Ef < V), 3-phase cylindrical rotor synchronous motor driving a mechanical load. The figure shows the per phase phasor diagram of the motor. Since the motor is under-excited, it will be operating at a lagging power factor cos φ.
In practice, for a synchronous motor, XS>>Ra, then the armature resistance (Ra) of the motor can be neglected. Since Ra is neglected, the armature copper loss will be zero. Therefore, the mechanical power developed (Pm) by the synchronous motor is equal to the input power (Pi) to the motor.
Also, Ra= 0, Er=IaXS, thus the armature current (Ia) lags the resultant voltage (Er) by 90°.
Input power per phase,
$$\mathrm{P_{i}=V\:I_{a}\:cosφ}$$
Therefore, the mechanical power developed per phase is,
$$\mathrm{P_{m}=P_{i}=V\:I_{a}\:Cosφ\:\:\:\:\:\:...(1)}$$
Referring to the phasor diagram of the motor, we get,
In triangle ABO,
$$\mathrm{AB=E_{r}\:Cosφ=I_{a}X_{S}\:Cosφ}$$
And, in triangle ABC,
$$\mathrm{AB=E_{f}\:Sin(180°-δ)=E_{f}\:Sinδ}$$
$$\mathrm{\therefore\:I_{a}X_{S}\:Cosφ=E_{f}\:Sinδ}$$
$$\mathrm{\Longrightarrow\:I_{a}Cosφ=\frac{E_{f}}{X_{S}}\:Sinδ\:\:\:\:\:\:...(2)}$$
Substituting the value of IaCosφ in Equation (1), we get,
$$\mathrm{P_{m}=\frac{VE_{f}}{X_{S}}\:Sinδ\:\:\:\:\:\:...(3)}$$
Equation (3) gives the mechanical power developed per phase of the synchronous motor.
The total mechanical power developed for the three phases is,
$$\mathrm{P_{m}=\frac{3VE_{f}}{X_{S}}\:Sinδ\:\:\:\:\:\:...(4)}$$
Condition for Maximum Mechanical Power Developed
For maximum mechanical power developed of the synchronous motor,
$$\mathrm{\frac{dp_{m}}{dδ}=0\:and\:\frac{d^2p_{m}}{dδ^2}<0}$$
$$\mathrm{\Longrightarrow\:\frac{d}{dδ}\left [\frac{VE_{f}}{X_{S}}Sinδ\right ]=0}$$
$$\mathrm{\Longrightarrow\:\frac{VE_{f}}{X_{S}}\:Cosδ=0}$$
$$\mathrm{\Longrightarrow\:Cosδ=Cos90°}$$
$$\mathrm{\therefore\:δ=90°}$$
Therefore, the mechanical power developed will be maximum when torque angle is equal to 90° (electrical). The maximum power developed is given by,
$$\mathrm{P_{m(max)}=\frac{VE_{f}}{X_{S}}...per phase}$$
$$\mathrm{P_{m(max)}=\frac{3VE_{f}}{X_{S}}...per phase}$$
Numerical Example
A 3-phase, 5000 kW, 11 kV, 200 RPM, 50 Hz synchronous motor has per phase synchronous reactance of 1.5 Ω. At full-load, the torque angle of the motor is 23° electrical. If the excitation EMF is 3.4 kV. Calculate the mechanical power developed and maximum mechanical power developed by the motor.
Solution
Terminal voltage per phase,
$$\mathrm{V=\frac{11000}{\sqrt{3}}=6351.04V}$$
Mechanical power developed,
$$\mathrm{P_{m}=\frac{3VE_{f}}{X_{S}}Sinδ=\frac{3\times6351.04\times3400}{1.5}\times\:Sin23°}$$
$$\mathrm{\Longrightarrow\:P_{m}=16.875 MW}$$
The maximum developed mechanical power is,
$$\mathrm{P_{m(max)}=\frac{3VE_{f}}{X_{S}}=\frac{3\times6351.04\times3400}{1.5}= 43.187 MW}$$
- Related Articles
- Power Developed by Salient Pole Synchronous Motor
- Power Flow in Synchronous Motor
- DC Motor Voltage Equation, Power Equation and Condition for Maximum Mechanical Power
- AC Motor Types: Synchronous Motor & Induction Motor
- Torque in a Synchronous Motor
- Difference between Synchronous Motor and Induction Motor
- Equivalent Circuit of a Synchronous Motor
- Starting Methods of Synchronous Motor
- Effect of Load Change on a Synchronous Motor
- How to make a synchronous motor self-starting?
- Phasor Diagrams of a Cylindrical Rotor Synchronous Motor
- Difference between Synchronous and Asynchronous Motor
- Determination of Synchronous Motor Excitation Voltage
- What are the Input Powers of a Synchronous Motor?
- What are the Output Powers of a Synchronous Motor?
