- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $x + \frac{1}{x} = 9$ find the value of $x^4 + \frac{1}{x^4}$.
Given:
$x + \frac{1}{x} = 9$
To do:
We have to find the value of $x^4 + \frac{1}{x^4}$.
Solution:
The given expression is $x + \frac{1}{x} = 9$. Here, we have to find the value of $x^4 + \frac{1}{x^4}$. So, by squaring the given expression and using the identity $(a+b)^2=a^2+2ab+b^2$, we can find the required value.
$(a+b)^2=a^2+2ab+b^2$...................(i)
Let us consider,
$x + \frac{1}{x} = 9$
Squaring on both sides, we get,
$(x + \frac{1}{x})^2 = 9^2$
$x^2+2\times x \times \frac{1}{x}+\frac{1}{x^2}=81$ [Using (I)]
$x^2+2+\frac{1}{x^2}=81$
$x^2+\frac{1}{x^2}=81-2$ (Transposing $2$ to RHS)
$x^2+\frac{1}{x^2}=79$
Now,
$x^2+\frac{1}{x^2}=79$
Squaring on both sides, we get,
$(x^2+\frac{1}{x^2})^2 = (79)^2$
$x^4+2\times x^2 \times \frac{1}{x^2}+\frac{1}{x^4}=6241$ [Using (I)]
$x^4+2+\frac{1}{x^4}=6241$
$x^4+\frac{1}{x^4}=6241-2$ (Transposing $2$ to RHS)
$x^4+\frac{1}{x^4}=6239$
Hence, the value of $x^4+\frac{1}{x^4}$ is $6239$.
- Related Articles
- If \( x+\frac{1}{x}=11 \), find the value of(a) \( x^{2}+\frac{1}{x^{2}} \)(b) \( x^{4}+\frac{1}{x^{4}} \)
- If \( x-\frac{1}{x}=5 \), find the value of(a) \( x^{2}+\frac{1}{x^{2}} \)(b) \( x^{4}+\frac{1}{x^{4}} \)
- If \( x^{4}+\frac{1}{x^{4}}=119 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- $x+\frac{1}{x}=4$ find the value of the following:a) $x^{2}+\frac{1}{x^{2}}$b) $x^{4}+\frac{1}{x 4}$
- If \( x^{4}+\frac{1}{x^{4}}=194 \), find \( x^{3}+\frac{1}{x^{3}}, x^{2}+\frac{1}{x^{2}} \) and \( x+\frac{1}{x} \)
- If $x - \frac{1}{x} = 3$, find the values of $x^2 + \frac{1}{x^2}$ and $x^4 + \frac{1}{x^4}$.
- If \( x+\frac{1}{x}=\sqrt{5} \), find the values of \( x^{2}+ \frac{1}{x^{2}} \) and \( x^{4}+\frac{1}{x^{4}} \).
- If \( x+\frac{1}{x}=3 \), calculate \( x^{2}+\frac{1}{x^{2}}, x^{3}+\frac{1}{x^{3}} \) and \( x^{4}+\frac{1}{x^{4}} \).
- If $x+\frac{1}{x}=4$, then find, $x^{2}+\frac{1}{x^2}=?$
- Find the value of $x$$\frac{x+2}{2}- \frac{x+1}{5}=\frac{x-3}{4}-1$
- If $\frac{3}{4}(x-1)=x-3$, find the value of $x$.
- If $( \frac{( 3 x-4)^{3}-( x+1)^{3}}{( 3 x-4)^{3}+( x+1)^{3}}=\frac{61}{189})$, find the value of $x$.
- If $x + \frac{1}{x} = 12$ find the value of $x - \frac{1}{x}$.
- Solve for x:$\frac{1}{x+1} +\frac{2}{x+2} =\frac{4}{x+4} ;\ x\neq -1,\ -2,\ -4$
- If \( x^{2}+\frac{1}{x^{2}}=62, \) find the value of\( x+\frac{1}{x} \)\( x-\frac{1}{x} \)
