- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $x + \frac{1}{x} = 12$ find the value of $x - \frac{1}{x}$.
Given:
$x + \frac{1}{x} = 12$
To do:
We have to find the value of $x - \frac{1}{x}$.
Solution:
The given expression is $x + \frac{1}{x} = $. Here, we have to find the value of $x^4 + \frac{1}{x^4}$. So, by squaring the given expression and using the identities $(a+b)^2=a^2+2ab+b^2$ and $(a-b)^2=a^2-2ab+b^2$, we can find the required value.
$(a+b)^2=a^2+2ab+b^2$.............(I)
$(a-b)^2=a^2-2ab+b^2$.............(II)
Let us consider,
$x + \frac{1}{x} = 12$
Squaring on both sides, we get,
$(x + \frac{1}{x})^2 = (12)^2$
$x^2+2\times x \times \frac{1}{x}+\frac{1}{x^2}=144$ [Using (I)]
$x^2+2+\frac{1}{x^2}=144$
$x^2+\frac{1}{x^2}=144-2$ (Transposing $2$ to RHS)
$x^2+\frac{1}{x^2}=142$
Now,
$x^2+\frac{1}{x^2}=142$
Subtracting 2 from both sides, we get,
$x^2+\frac{1}{x^2}-2=142-2$
$x^2-2\times x \times \frac{1}{x}+\frac{1}{x^2}=140$ [Since $2\times x \times \frac{1}{x}=2$]
$(x-\frac{1}{x})^2=140$ [Using (II)]
Taking square root on both sides, we get,
$x-\frac{1}{x}=\sqrt{140}$
Hence, the value of $x-\frac{1}{x}$ is $\sqrt{140}$.
- Related Articles
- If \( x^{2}+\frac{1}{x^{2}}=62, \) find the value of\( x+\frac{1}{x} \)\( x-\frac{1}{x} \)
- If \( x-\frac{1}{x}=-1 \), find the value of \( x^{2}+\frac{1}{x^{2}} \).
- If \( x^{2}+\frac{1}{x^{2}}=62 \), find the value of(a) \( x+\frac{1}{x} \)(b) \( x-\frac{1}{x} \)
- Find the value of $x^2+\frac{1}{x^2}$ if $x+\frac{1}{x}=3$.
- If \( x+\frac{1}{x}=11 \), find the value of \( x^{2}+\frac{1}{x^{2}} \).
- If \( x^{2}+\frac{1}{x^{2}}=66 \), find the value of \( x-\frac{1}{x} \).
- If \( x^{2}+\frac{1}{x^{2}}=79 \), find the value of \( x+\frac{1}{x} \).
- If \( x+\frac{1}{x}=5 \), find the value of \( x^{3}+\frac{1}{x^{3}} \).
- If \( x-\frac{1}{x}=7 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- If \( x-\frac{1}{x}=5 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- If $x + \frac{1}{x} =20$, find the value of $x^2 + \frac{1}{x^2}$.
- If $x + \frac{1}{x} = 9$ find the value of $x^4 + \frac{1}{x^4}$.
- If \( x+\frac{1}{x}=11 \), find the value of(a) \( x^{2}+\frac{1}{x^{2}} \)(b) \( x^{4}+\frac{1}{x^{4}} \)
- If \( x-\frac{1}{x}=5 \), find the value of(a) \( x^{2}+\frac{1}{x^{2}} \)(b) \( x^{4}+\frac{1}{x^{4}} \)
- If $x - \frac{1}{x} = \sqrt{5}$, find the value of $x^2 + \frac{1}{x^2}$
