- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x^{2}+\frac{1}{x^{2}}=51 $, find the value of $ x^{3}-\frac{1}{x^{3}} $.
Given:
\( x^{2}+\frac{1}{x^{2}}=51 \)
To do:
We have to find the value of \( x^{3}-\frac{1}{x^{3}} \).
Solution:
We know that,
$(a-b)^3=a^3 - b^3 - 3ab(a-b)$
Therefore,
$x^{2}+\frac{1}{x^{2}}=51$
$(x-\frac{1}{x})^{2}=x^{2}+\frac{1}{x^{2}}-2\times x \times \frac{1}{x}$
$=x^{2}+\frac{1}{x^{2}}-2$
$=51-2$
$=49$
$=(7)^{2}$
$\Rightarrow x-\frac{1}{x}=7$
Cubing both sides, we get,
$(x-\frac{1}{x})^{3}=(7)^{3}$
$\Rightarrow x^{3}-\frac{1}{x^{3}}-3(x-\frac{1}{x})=343$
$\Rightarrow x^{3}-\frac{1}{x^{3}}-3 \times 7=343$
$\Rightarrow x^{3}-\frac{1}{x^{3}}=343+21$
$\Rightarrow x^{3}-\frac{1}{x^{3}}=364$
The value of \( x^{3}-\frac{1}{x^{3}} \) is $364$.
Advertisements