- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Determination of Synchronous Motor Excitation Voltage
The excitation voltage of synchronous motor refers to the DC supply given to the rotor to produce the required magnetic flux. The excitation voltage (Ef) of a synchronous motor can be determined for different power factors using complex algebra.
Let the supply voltage (V) be taken as the reference voltage. Thus,
$$\mathrm{V=V\angle0°=V+j0\:\:\:\:\:\:...(1)}$$
Then, the armature current at different power factors is given as follows,
For lagging power factor −
$$\mathrm{I_{a}=I_{a}\angle-φ=I_{a}cosφ-jI_{a}sinφ\:\:\:\:\:\:...(2)}$$
For unity power factor −
$$\mathrm{I_{a}=I_{a}\angle0°=I_{a}+j0\:\:\:\:\:\:...(3)}$$
For leading power factor −
$$\mathrm{I_{a}=I_{a}\angle+φ=I_{a}cosφ+jI_{a}sinφ\:\:\:\:\:\:...(4)}$$
Now, the excitation voltage of the synchronous motor is given by,
$$\mathrm{E_{f}=V-I_{a}Z_{S}\:\:\:\:\:\:...(5)}$$
Where,ZS is the synchronous impedance and is given by,
$$\mathrm{Z_{S}=R_{a}+jX_{S}\:\:\:\:\:\:...(6)}$$
Case 1 – Excitation Voltage for Lagging Power Factor
$$\mathrm{E_{f}\angleδ=V\angle0°-(I_{a}=I_{a}\angle-φ)(R_{a}+jX_{S})}$$
$$\mathrm{\Longrightarrow\:E_{f}\angleδ=(V+j0)-(I_{a}cosφ-jI_{a}sinφ)(R_{a}+jX_{S})}$$
$$\mathrm{\Longrightarrow\:E_{f}\angleδ=(V+j0)-(I_{a}R_{a}cosφ+jI_{a}X_{S}cosφ-jI_{a}R_{a}sinφ+I_{a}X_{S}sinφ)}$$
$$\mathrm{\Longrightarrow\:E_{f}\angleδ=(V-I_{a}R_{a}cosφ-I_{a}X_{S}sinφ)-j(I_{a}X_{S}cosφ-I_{a}R_{a}sinφ)\:\:\:\:\:\:...(7)}$$
The magnitude of the excitation voltage at lagging power factor is given by,
$$\mathrm{\left|E_{f}\right|=\sqrt{(V-I_{a}R_{a}cosφ-I_{a}X_{S}sinφ)^{2}+(I_{a}X_{S}cosφ-I_{a}R_{a}sinφ)^{2}}\:\:\:\:\:\:...(8)}$$
The torque angle is given by,
$$\mathrm{δ=-tan^{-1}\left[\frac{I_{a}X_{S}cosφ-I_{a}R_{a}sinφ}{V-I_{a}R_{a}cosφ-I_{a}X_{S}sinφ}\right]\:\:\:\:\:\:...(9)}$$
Case 2 – Excitation Voltage for Unity Power Factor
As for unity power factor,
$$\mathrm{cosφ=1}$$
From Eqns.(8)&(9), we get,
$$\mathrm{\left|E_{f}\right|=\sqrt{(V-I_{a}R_{a})^{2}-(I_{a}X_{S})^{2}}\:\:\:\:\:\:...(10)}$$
$$\mathrm{δ=-tan^{-1}\left(\frac{I_{a}X_{S}}{V-I_{a}R_{a}}\right)\:\:\:\:\:\:...(11)}$$
Case 3 – Excitation Voltage for Leading Power Factor
$$\mathrm{\left|E_{f}\right|=\sqrt{(V-I_{a}R_{a}cosφ+I_{a}X_{S}sinφ)^{2}+(I_{a}X_{S}cosφ+I_{a}R_{a}sinφ)^{2}}\:\:\:\:\:\:...(12)}$$
Torque angle,
$$\mathrm{δ=-tan^{-1}\left[\frac{I_{a}X_{S}cosφ+I_{a}R_{a}sinφ}{V-I_{a}R_{a}cosφ+I_{a}X_{S}sinφ}\right]\:\:\:\:\:\:...(13)}$$
Numerical Example
A 1500 kVA, 11000 V, 3-phase star connected synchronous motor has an armature resistance and synchronous reactance per phase of 4 Ω and 50 Ω respectively.
Determine the excitation EMF per phase and the angular retardation of the rotor when fully loaded at 0.8 power factor lagging.
Solution
Supply voltage per phase,
$$\mathrm{V=\frac{11000}{\sqrt{3}}= 6351V}$$
The armature current is,
$$\mathrm{kVA_{3φ}=\frac{\sqrt{3}V_{L}I_{a}}{1000}}$$
$$\mathrm{\therefore\:I_{a}=\frac{(kVA)_{3φ}\:\times\:1000}{\sqrt{3}V_{L}}=\frac{1500\times\:1000}{\sqrt{3}\:\times\:11000}= 78.7A}$$
At 0.8 power factor lagging −
$$\mathrm{cosφ = 0.8 \:then\: sinφ = 0.6}$$
The magnitude of the excitation voltage at lagging power factor is
$$\mathrm{\left|E_{f}\right|=\sqrt{(V-I_{a}R_{a}cosφ-I_{a}X_{S}sinφ)^{2}+(I_{a}X_{S}cosφ-I_{a}R_{a}sinφ)^{2}}}$$
$$\mathrm{\left|E_{f}\right|=\sqrt{[6351-(78.7\:\times4\:\times0.8)-(78.7\:\times50\:\times0.6)]^{2}+[(78.7\:\times50\:\times0.8)-(78.7\:\times4\:\times0.6)]^{2}}}$$
$$\mathrm{\left|E_{f}\right|=4767.6V}$$
The angular retardation of the rotor is,
$$\mathrm{Torque angle,δ=-tan^{-1}\left[\frac{I_{a}X_{S}cosφ-I_{a}R_{a}sinφ}{V-I_{a}R_{a}cosφ-I_{a}X_{S}sinφ}\right]}$$
$$\mathrm{δ=-tan^{-1}\left(\frac{2959.12}{3738.16}\right)=-38.37°}$$
Therefore, the excitation EMF per phase and the angular retardation of the motor is,
$$\mathrm{E_{f}\angleδ=4767.6\angle-38.37°Volts\: per \:phase}$$
- Related Articles
- Effect of Changing Field Excitation on Synchronous Motor at Constant Load
- Excitation System of Synchronous Machine
- AC Motor Types: Synchronous Motor & Induction Motor
- Determination of Voltage Regulation of a Three Winding Transformer
- Starting Methods of Synchronous Motor
- Voltage Regulation of Alternator or Synchronous Generator
- Difference between Synchronous Motor and Induction Motor
- Equivalent Circuit of a Synchronous Motor
- Power Flow in Synchronous Motor
- Torque in a Synchronous Motor
- Difference between Synchronous and Asynchronous Motor
- Phasor Diagrams of a Cylindrical Rotor Synchronous Motor
- Effect of Load Change on a Synchronous Motor
- Speed Control of Induction Motor by Stator Voltage Control
- V Curves and Inverted V Curves of Synchronous Motor
