- Cosmology Tutorial
- Cosmology - Home
- The Expanding Universe
- Cepheid Variables
- Redshift and Recessional Velocity
- Redshift Vs. Kinematic Doppler Shift
- Cosmological Metric & Expansion
- Robertson-Walker Metric
- Hubble Parameter & Scale Factor
- Friedmann Equation & World Models
- Fluid Equation
- Matter Dominated Universe
- Radiation Dominated Universe
- The Dark Energy
- Spiral Galaxy Rotation Curves
- Velocity Dispersion Measurements of Galaxies
- Hubble & Density Parameter
- Age of The Universe
- Angular Diameter Distance
- Luminosity Distance
- Type 1A Supernovae
- Cosmic Microwave Background
- CMB - Temperature at Decoupling
- Anisotropy of CMB Radiation & Cobe
- Modelling the CMB Anisotropies
- Horizon Length at the Surface of Last Scattering
- Extrasolar Planet Detection
- Radial Velocity Method
- Transit Method
- Exoplanet Properties

- Cosmology Useful Resources
- Cosmology - Quick Guide
- Cosmology - Useful Resources
- Cosmology - Discussion

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

In this chapter, we will discuss the Solutions to Friedmann Equations relating to the Matter Dominated Universe. In cosmology, because we are seeing everything in a large scale, the solar systems, galaxies, everything happens to be like dust particles (that’s what we see it with our eyes), we can call it dusty universe or matter only universe.

In the **Fluid Equation**,

$$\dot{\rho} = -3\left ( \frac{\dot{a}}{a} \right )\rho -3\left ( \frac{\dot{a}}{a} \right )\left ( \frac{P}{c^2} \right )$$

We can see there is a pressure term. For a dusty universe, **P = 0**, because the energy density of the matter will be greater than radiation pressure, and matter is not moving with relativistic speed.

So, the Fluid Equation will become,

$$\dot{\rho} = -3\left ( \frac{\dot{a}}{a} \right )\rho$$

$$\Rightarrow \dot{\rho}a + 3\dot{a}\rho = 0$$

$$\Rightarrow \frac{1}{a^3}\frac{\mathrm{d}}{\mathrm{d} t}(a^3 \rho) = 0$$

$$\Rightarrow \rho a^3 =\: constant$$

$$\Rightarrow \rho \propto \frac{1}{a^3}$$

There is no counter intuition in this equation because density should scale as $a^{-3}$ because Volume is increasing as $a^3$.

From the last relation, we can say that,

$$\frac{\rho (t)}{\rho_0} = \left [ \frac{a_0}{a(t)} \right ]^3$$

For the present universe, **a**, which is equal to **a _{0}** should be 1. So,

$$\rho(t) = \frac{\rho_0}{a^3}$$

In a matter dominated flat universe, k = 0. So, Friedmann equation will become,

$$\left ( \frac{\dot{a}}{a} \right )^2 = \frac{8 \pi G\rho}{3}$$

$$\dot{a}^2 = \frac{8\pi G \rho a^2}{3}$$

By solving this equation, we will get,

$$a \propto t^{2/3}$$

$$\frac{a(t)}{a_0} = \left ( \frac{t}{t_0} \right )^{2/3}$$

$$a(t) = \left( \frac{t}{t_0} \right )^{2/3}$$

This means that the universe will keep on increasing with a diminishing rate. The following image show the expansion of a Dusty Universe.

Take a look at the following equation −

$$\frac{\rho(t)}{\rho_0} = \left ( \frac{t_0}{t} \right )^2$$

We know that the scale factor changes with time as $t^{2/3}$. So,

$$a(t) = \left ( \frac{t}{t_0} \right )^{2/3}$$

Differentiating it, we will get,

$$\frac{(da)}{dt} = \dot{a} = \frac{2}{3} \left ( \frac{t^{-1/3}}{t_0} \right )$$

We know that the **Hubble Constant** is,

$$H(t) = \frac{\dot{a}}{a} = \frac{2}{3t}$$

This is the equation for **Einstein-de sitter Universe**. If we want to calculate the present age of the universe then,

$$t_0 = t_{age} = \frac{2}{3H_0}$$

After putting the value of $H_0$ for the present universe, we will get the value of the age of the universe as **9 Gyrs**. There are many **Globular Cluster** in our own milky way galaxy which have ages more than that.

That was all about the dusty universe. Now, if you assume that the universe is dominated by radiation and not by matter, then the radiation energy density goes as $a^{-4}$ rather than $a^{-3}$. We will see more of it in the next chapter.

In cosmology, everything happens to be like dust particles, hence, we call it dusty universe or matter only universe.

If we assume that the universe is dominated by radiation and not by matter, then the radiation energy density goes as $a^{-4}$ rather than $a^{-3}$.

Advertisements