
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Manish Kumar Saini has Published 1143 Articles

Manish Kumar Saini
6K+ Views
Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{X(\omega)=\int_{−\infty}^{\infty}x(t)e^{-j\omega t}dt}$$Fourier Transform of Two-Sided Real Exponential FunctionLet a two-sided real exponential function as, $$\mathrm{x(t)=e^{-a|t|}}$$The two-sided or double-sided real exponential function is defined as, $$\mathrm{e^{-a|t|}=\begin{cases}e^{at} & for\:t ≤ 0\e^{-at} & for\:t ≥ 0 \end{cases} =e^{at}u(-t)+e^{-at}u(t) }$$Where, the ... Read More

Manish Kumar Saini
131K+ Views
Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{x(\omega)=\int_{−\infty}^{\infty}x(t)e^{-j\omega t }dt}$$Fourier Transform of Sine FunctionLet$$\mathrm{x(t)=sin\:\omega_{0} t}$$From Euler’s rule, we have, $$\mathrm{x(t)=sin\:\omega_{0} t=\left[\frac{ e^{j\omega_{0} t}- e^{-j\omega_{0} t}}{2j} \right]}$$Then, from the definition of Fourier transform, we have, $$\mathrm{F[sin\:\omega_{0} t]=X(\omega)=\int_{−\infty}^{\infty}x(t)e^{-j\omega t}dt=\int_{−\infty}^{\infty}sin\:\omega_{0}\: t\: e^{-j\omega t}dt}$$$$\mathrm{ \Rightarrow\:X(\omega)=\int_{−\infty}^{\infty}\left[ \frac{e^{j\omega_{0} t}-e^{-j\omega_{0} t}}{2j}\right] ... Read More

Manish Kumar Saini
5K+ Views
Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{X(\omega)= \int_{−\infty}^{\infty}x(t)e^{-j\omega t}dt}$$Fourier Transform of One-Sided Real Exponential FunctionA single-sided real exponential function is defined as, $$\mathrm{x(t)=e^{-a t}u(t)}$$Where, $u(t)$ is the unit step signal and is defined as, $$\mathrm{u(t)=\begin{cases}1 & for\:t≥ 0 \0 & for\:t < 0 ... Read More

Manish Kumar Saini
26K+ Views
Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{X(\omega)=\int_{−\infty}^{\infty}x(t)e^{-j\omega t}dt}$$Fourier Transform of Signum FunctionThe signum function is represented by $sgn(t)$ and is defined as$$\mathrm{sgn(t)=\begin{cases}1 & for\:t>0\-1 & for\:tRead More

Manish Kumar Saini
73K+ Views
Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{X(\omega)=\int_{−\infty}^{\infty}x(t)e^{-j\omega t}\:dt}$$Fourier Transform of Rectangular FunctionConsider a rectangular function as shown in Figure-1.It is defined as, $$\mathrm{rect\left(\frac{t}{τ}\right)=\prod\left(\frac{t}{τ}\right)=\begin{cases}1 & for\:|t|≤ \left(\frac{τ}{2}\right)\0 & otherwise\end{cases}}$$Given that$$\mathrm{x(t)=\prod\left(\frac{t}{τ}\right)}$$Hence, from the definition of Fourier transform, we have, $$\mathrm{F\left[\prod\left(\frac{t}{τ}\right) \right]=X(\omega)=\int_{−\infty}^{\infty}x(t)e^{-j\omega t}\:dt=\int_{−\infty}^{\infty}\prod\left(\frac{t}{τ}\right)e^{-j\omega t}\:dt}$$$$\mathrm{\Rightarrow\:X(\omega)=\int_{−(τ/2)}^{(τ/2)}1\cdot e^{-j\omega t}\:dt=\left[\frac{e^{-j\omega ... Read More

Manish Kumar Saini
20K+ Views
Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{X(\omega)=\int_{−\infty}^{\infty}x(t)\:e^{-j\omega t}dt}$$Fourier Transform of a Triangular PulseA triangular signal is shown in Figure-1 −And it is defined as, $$\mathrm{\Delta \left(\frac{t}{τ}\right)=\begin{cases}\left( 1+\frac{2t}{τ}\right); & for\:\left(-\frac{τ}{2}\right) Read More

Manish Kumar Saini
2K+ Views
The infinite series of sine and cosine terms of frequencies $0, \omega_{0}, 2\omega_{0}, 3\omega_{0}, ....k\omega_{0}$is known as trigonometric Fourier series and can written as, $$\mathrm{x(t)=a_{0}+\sum_{n=1}^{\infty}a_{n}\:cos\:n\omega_{0} t+b_{n}\:sin\:n\omega_{0} t… (1)}$$Here, the constant $a_{0}, a_{n}$ and $b_{n}$ are called trigonometric Fourier series coefficients.Evaluation of a0To evaluate the coefficient $a_{0}$, we shall integrate the ... Read More

Manish Kumar Saini
8K+ Views
What is Fourier Series?In the domain of engineering, most of the phenomena are periodic in nature such as the alternating current and voltage. These periodic functions could be analysed by resolving into their constituent components by a process called the Fourier series.Therefore, the Fourier series can be defined as under ... Read More

Manish Kumar Saini
6K+ Views
The cosine form of Fourier series is the alternate form of the trigonometric Fourier series. The cosine form Fourier series is also known as polar form Fourier series or harmonic form Fourier series.The trigonometric Fourier series of a function x(t) contains sine and cosine terms of the same frequency. That ... Read More

Manish Kumar Saini
5K+ Views
Quarter Wave SymmetryA periodic function $x(t)$ which has either odd symmetry or even symmetry along with the half wave symmetry is said to have quarter wave symmetry.Mathematically, a periodic function $x(t)$ is said to have quarter wave symmetry, if it satisfies the following condition −$$\mathrm{x(t)=x(-t)\:or\:x(t)=-x(-t)\:and\:x(t)=-x\left (t ± \frac{T}{2}\right )}$$Some examples ... Read More