- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Fourier Cosine Series – Explanation and Examples
The cosine form of Fourier series is the alternate form of the trigonometric Fourier series. The cosine form Fourier series is also known as polar form Fourier series or harmonic form Fourier series.
The trigonometric Fourier series of a function x(t) contains sine and cosine terms of the same frequency. That is,
$$\mathrm{x(t)=a_{0}+\sum_{n=1}^{\infty}a_{n}\:cos\:n\omega_{0} t+b_{n}\:sin\:n\omega_{0} t… (1)}$$
Where,
$$\mathrm{a_{0}=\frac{1}{T}\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt}$$
$$\mathrm{a_{n}=\frac{2}{T}\int_{t_{0}}^{(t_{0}+T)}x(t)\:cos\:n\omega_{0} t\:dt}$$
$$\mathrm{b_{n}=\frac{2}{T}\int_{t_{0}}^{(t_{0}+T)}x(t)\:sin\:n\omega_{0} t\:dt}$$
In equation (1), by multiplying the numerator and denominator of the sine and cosine terms with ($\sqrt{a_{n}^{2}+b_{n}^{2}}$), we get,
$$\mathrm{x(t)=a_{0}+\sum_{n=1}^{\infty}\left( \sqrt{a_{n}^{2}+b_{n}^{2}}\right)\left( \frac{a_{n}}{\sqrt{a_{n}^{2}+b_{n}^{2}}}cos\:n\omega_{0} t+\frac{b_{n}}{\sqrt{a_{n}^{2}+b_{n}^{2}}}sin\:n\omega_{0} t\right)… (2)}$$
Putting the values in the equation (2) as,
$$\mathrm{a_{0}=A_{0}}$$
$$\mathrm{\sqrt{a_{n}^{2}+b_{n}^{2}}=A_{n}… (3)}$$
$$\mathrm{\frac{a_{n}}{\sqrt{a_{n}^{2}+b_{n}^{2}}}=cos\:\theta_{n}\:\:and\:\:\frac{b_{n}}{\sqrt{a_{n}^{2}+b_{n}^{2}}}=-sin\:\theta_{n}}$$
We obtain,
$$\mathrm{x(t)=A_{0}+\sum_{n=1}^{\infty}A_{n}(cos\:\theta_{n}\:cos\:n\omega_{0} t-sin\:\theta_{n}\:sin\:n\omega_{0} t)}$$
$$\mathrm{\Rightarrow\:x(t)=A_{0}+\sum_{n=1}^{\infty}A_{n}\:cos(n\omega_{0} t+\theta_{n})… (4)}$$
Where,
$$\mathrm{\theta_{n}=-tan^{-1} \left(\frac{b_{n}}{a_{n}}\right)… (5)}$$
The expression in equation (4) is the cosine representation of the function x(t) which contains sinusoids of frequencies $\omega_{0},2\omega_{0},3\omega_{0},...$. In this expression, $A_{0}$is called the DC component and the term $A_{n}[cos(n\omega_{0} t+\theta_{n})]$ is called the nth harmonic component of the function x(t).
Here, $A_{n}$ represents the harmonic amplitude or amplitude coefficient or spectral amplitude of the cosine Fourier series, and $\theta_{n}$ is called the phase angle or phase coefficient or spectral phase of the cosine Fourier series.
Numerical Example
Find the cosine Fourier series for the waveform shown in the figure.
Solution
The waveform of the figure can be described mathematically as follows −
$$\mathrm{x(t)=\frac{A}{2\pi}t;\:\:for\:0 ≤\:t\:≤2\pi}$$
Let
$$\mathrm{t_{0}=0\:\:and\:\:(t_{0}+T)=2\pi}$$
Therefore, the fundamental frequency of the given function is,
$$\mathrm{\omega_{0}=\frac{2\pi}{T}=\frac{2\pi}{2\pi}=1}$$
Now, the coefficients of the cosine Fourier series can be determined as follows −
$$\mathrm{A_{0}=a_{0}=\frac{1}{T}\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt}$$
$$\mathrm{\Rightarrow\:A_{0}=\frac{1}{2\pi}\int_{0}^{2\pi}\frac{A}{2\pi}t\:dt=\frac{A}{(2\pi)^{2}}\left [\frac{t^{2}}{2} \right ]_{0}^{2\pi}=\frac{A}{(2)}}$$
$$\mathrm{\therefore\:A_{0}=\frac{A}{2}}$$
Again,
$$\mathrm{a_{n}=\frac{2}{T}\int_{t_{0}}^{(t_{0}+T)}x(t)\:cos\:n\omega_{0} t\:dt}$$
$$\mathrm{\Rightarrow\:a_{n}=\frac{2}{2\pi}\int_{0}^{2\pi}(\frac{A}{2\pi}t)cos\:nt\:dt=\frac{2A}{(2\pi)^{2}}\int_{0}^{2\pi}t\:cos\:nt\:dt}$$
On solving the above integration, we get,
$$\mathrm{a_{n}=\frac{2A}{(2\pi)^{2}}[0]=0}$$
Also,
$$\mathrm{b_{n}=\frac{2}{T}\int_{t_{0}}^{(t_{0}+T)}x(t)sin\:n\omega_{0} t\:dt=\frac{2}{2\pi}\int_{0}^{2\pi}(\frac{A}{2\pi}t)sin\:nt\:dt}$$
$$\mathrm{\Rightarrow\:b_{n}=\frac{2A}{(2\pi)^{2}}\int_{0}^{2\pi}t\:sin\:nt\:dt}$$
On solving the above integration, we obtain,
$$\mathrm{b_{n}=\frac{2A}{(2\pi)^{2}}(\frac{-2\pi}{n})=\frac{-A}{n\pi}}$$
Hence, amplitude coefficient of the cosine Fourier series is,
$$\mathrm{A_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}=\sqrt{0+\left(\frac{-A}{n\pi}\right)^{2}}=\frac{A}{n\pi}}$$
And the phase coefficient of the cosine Fourier series is,
$$\mathrm{\theta_{n}=-tan^{-1}\left(\frac{b_{n}}{a_{n}}\right)=-tan^{-1}\left[\frac{\left(\frac{-A}{n\pi}\right)}{0} \right]=-\frac{\pi}{2}}$$
Therefore, the cosine Fourier series of the waveform is,
$$\mathrm{x(t)=A_{0}+\sum_{n=1}^{\infty}A_{n}\:cos(n\omega_{0} t+\theta_{n})}$$
$$\mathrm{\Rightarrow\:x(t)=\frac{A}{2}+\sum_{n=1}^{\infty}\frac{A}{n\pi}cos(nt-\frac{\pi}{2})… (6)}$$
The expression in equation (6) is the cosine Fourier series representation of the given waveform.
- Related Articles
- Trigonometric Fourier Series – Definition and Explanation
- Fourier Transform of the Sine and Cosine Functions
- Difference between Fourier Series and Fourier Transform
- Fourier Series – Representation and Properties
- Derivation of Fourier Transform from Fourier Series
- Angular Displacement - Definition, Explanation, Examples, and FAQs
- GIBBS Phenomenon for Fourier Series
- Magnetic Circuit with Air Gap: Explanation and Examples
- Relation between Trigonometric & Exponential Fourier Series
- Signals & Systems – Complex Exponential Fourier Series
- Expression for Exponential Fourier Series Coefficients
- Fourier Series Representation of Periodic Signals
- Linearity and Conjugation Property of Continuous-Time Fourier Series
- Time Differentiation and Integration Properties of Continuous-Time Fourier Series
- Convolution Property of Continuous-Time Fourier Series
