- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Expressions for the Trigonometric Fourier Series Coefficients
The infinite series of sine and cosine terms of frequencies $0,\omega_{0},2\omega_{0},3\omega_{0},....k\omega_{0}$is known as trigonometric Fourier series and can written as,
$$\mathrm{x(t)=a_{0}+\sum_{n=1}^{\infty}a_{n}\:cos\:n\omega_{0} t+b_{n}\:sin\:n\omega_{0} t… (1)}$$
Here, the constant $a_{0},a_{n}$ and $b_{n}$ are called trigonometric Fourier series coefficients.
Evaluation of a0
To evaluate the coefficient $a_{0}$, we shall integrate the equation (1) on both sides over one period, i.e.,
$$\mathrm{\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt=a_{0}\int_{t_{0}}^{(t_{0}+T)}dt+\int_{t_{0}}^{(t_{0}+T)}\left(\sum_{n=1}^{\infty}a_{n}\:cos\:n\omega_{0} t+b_{n}\:sin\:n\omega_{0} t\right)dt}$$
$$\mathrm{\Rightarrow\:\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt=a_{0}T+\sum_{n=1}^{\infty}a_{n}\int_{t_{0}}^{(t_{0}+T)}cos\:n\omega_{0} t\:dt+\sum_{n=1}^{\infty}b_{n}\int_{t_{0}}^{(t_{0}+T)}sin\:n\omega_{0} t\:dt… (2)}$$
As we know that the net areas of sinusoids over complete periods are zero for any non-zero integer n and any time $t_{0}$. Therefore,
$$\mathrm{\int_{t_{0}}^{(t_{0}+T)}cos\:n\omega_{0} t\:dt=0\:\:and\:\:\int_{t_{0}}^{(t_{0}+T)}sin\:n\omega_{0} t\:dt=0}$$
Hence, from equation (2), we get,
$$\mathrm{\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt=a_{0}T}$$
$$\mathrm{\therefore\:a_{0}=\frac{1}{T}\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt… (3)}$$
Using equation (3), we can obtain the value of the Fourier coefficient $a_{0}$.
Evaluation of an
To evaluate the Fourier coefficient $a_{n}$, multiply both sides of the equation (1) by $cos\:m\omega_{0}t\:dt$ and then integrate over one period, i.e.,
$$\mathrm{\int_{t_{0}}^{(t_{0}+T)}x(t)\:cos\:m\omega_{0}t\:dt}$$
$$\mathrm{=a_{0}\int_{t_{0}}^{(t_{0}+T)}cos\:m\omega_{0}t\:dt+\sum_{n=1}^{\infty}a_{n}\int_{t_{0}}^{(t_{0}+T)}cos(n\omega_{0} t)\:cos(m\omega_{0} t)dt+\sum_{n=1}^{\infty}b_{n}\int_{t_{0}}^{(t_{0}+T)}sin(n\omega_{0} t)\:cos(m\omega_{0} t)dt… (4)}$$
When m = n, then the first and third integrals in the equation (4) are equal to zero and the second integral is equal to $\left(\frac{T}{2} \right)$. Therefore,
$$\mathrm{\int_{t_{0}}^{(t_{0}+T)}x(t)\:cos\:m\omega_{0} t\:dt=a_{m}\left(\frac{T}{2} \right)}$$
Since m = n,
$$\mathrm{\therefore\:a_{n}=\frac{2}{T}\int_{t_{0}}^{(t_{0}+T)}x(t)\:cos\:n\omega_{0} t\:dt… (5)}$$
Evaluation of bn
To evaluate the Fourier coefficient $b_{n}$, multiply both sides of the equation (1) by $sin\:m\omega_{0} t$and then integrate over one period, i.e.,
$$\mathrm{\int_{t_{0}}^{(t_{0}+T)}x(t)\:sin\:m\omega_{0}t\:dt}$$
$$\mathrm{=a_{0}\int_{t_{0}}^{(t_{0}+T)}sin\:m\omega_{0}t\:dt+\sum_{n=1}^{\infty}a_{n}\int_{t_{0}}^{(t_{0}+T)}cos(n\omega_{0} t)\:sin(m\omega_{0} t)dt+\sum_{n=1}^{\infty}b_{n}\int_{t_{0}}^{(t_{0}+T)}sin(n\omega_{0} t)\:sin(m\omega_{0} t)dt… (6)}$$
When m = n, then the first and second integrals in the equation (6) are equal to zero and the third integral is equal to $\left(\frac{T}{2} \right)$. Therefore,
$$\mathrm{\int_{t_{0}}^{(t_{0}+T)}x(t)\:sin\:m\omega_{0} t\:dt=b_{m}\left(\frac{T}{2}\right)}$$
Since m = n,
$$\mathrm{\therefore\:b_{n}=\frac{2}{T}\int_{t_{0}}^{(t_{0}+T)}x(t)\:sin\:n\omega_{0} t\:dt… (7)}$$
- Related Articles
- Expression for Exponential Fourier Series Coefficients
- Relation between Trigonometric & Exponential Fourier Series
- Trigonometric Fourier Series – Definition and Explanation
- GIBBS Phenomenon for Fourier Series
- Trigonometric expressions in Arduino
- Derivation of Fourier Transform from Fourier Series
- Difference between Fourier Series and Fourier Transform
- Fourier Series – Representation and Properties
- Signals & Systems – Complex Exponential Fourier Series
- Fourier Cosine Series – Explanation and Examples
- Fourier Series Representation of Periodic Signals
- Convolution Property of Continuous-Time Fourier Series
- Parseval’s Theorem in Continuous-Time Fourier Series
- Signals & Systems – Properties of Continuous Time Fourier Series
- Identify the terms, their coefficients for each of the following expressions:$( i).\ 5xyz^{2}-3zy$$( ii).\ 1+x+x^{2}$
