Manish Kumar Saini has Published 1379 Articles

Signals and Systems – System Bandwidth Vs. Signal Bandwidth

Manish Kumar Saini

Manish Kumar Saini

Updated on 14-Dec-2021 12:34:03

3K+ Views

Signal BandwidthThe spectral components of a signal extends from (βˆ’βˆž) to ∞ and any practical signal has finite energy. Consequently, the spectral components approach zero when the frequency πœ” tends to ∞. Therefore, those spectral components can be neglected which have negligible energy and hence only a band of frequency ... Read More

Signals and Systems – Relation between Convolution and Correlation

Manish Kumar Saini

Manish Kumar Saini

Updated on 14-Dec-2021 12:29:00

7K+ Views

ConvolutionThe convolution is a mathematical operation for combining two signals to form a third signal. In other words, the convolution is a mathematical way which is used to express the relation between the input and output characteristics of an LTI system.Mathematically, the convolution of two signals is given by, $$\mathrm{x_{1}\left ... Read More

Fourier Transform of Unit Impulse Function, Constant Amplitude and Complex Exponential Function

Manish Kumar Saini

Manish Kumar Saini

Updated on 09-Dec-2021 07:12:15

17K+ Views

Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{X(\omega)=\int_{βˆ’\infty}^{\infty}x(t)e^{-j\omega t}dt}$$Fourier Transform of Unit Impulse FunctionThe unit impulse function is defined as, $$\mathrm{\delta(t)=\begin{cases}1 & for\:t=0 \0 & for\:t β‰  0 \end{cases}}$$If it is given that$$\mathrm{x(t)=\delta(t)}$$Then, from the definition of Fourier transform, we have, $$\mathrm{X(\omega)=\int_{βˆ’\infty}^{\infty}x(t)e^{-j\omega t}dt=\int_{βˆ’\infty}^{\infty}\delta(t)e^{-j\omega t}dt}$$As ... Read More

Fourier Transform of Two-Sided Real Exponential Functions

Manish Kumar Saini

Manish Kumar Saini

Updated on 09-Dec-2021 07:01:15

4K+ Views

Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{X(\omega)=\int_{βˆ’\infty}^{\infty}x(t)e^{-j\omega t}dt}$$Fourier Transform of Two-Sided Real Exponential FunctionLet a two-sided real exponential function as, $$\mathrm{x(t)=e^{-a|t|}}$$The two-sided or double-sided real exponential function is defined as, $$\mathrm{e^{-a|t|}=\begin{cases}e^{at} & for\:t ≀ 0\e^{-at} & for\:t β‰₯ 0 \end{cases} =e^{at}u(-t)+e^{-at}u(t) }$$Where, the ... Read More

Fourier Transform of the Sine and Cosine Functions

Manish Kumar Saini

Manish Kumar Saini

Updated on 09-Dec-2021 06:57:00

69K+ Views

Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{x(\omega)=\int_{βˆ’\infty}^{\infty}x(t)e^{-j\omega t }dt}$$Fourier Transform of Sine FunctionLet$$\mathrm{x(t)=sin\:\omega_{0} t}$$From Euler’s rule, we have, $$\mathrm{x(t)=sin\:\omega_{0} t=\left[\frac{ e^{j\omega_{0} t}- e^{-j\omega_{0} t}}{2j} \right]}$$Then, from the definition of Fourier transform, we have, $$\mathrm{F[sin\:\omega_{0} t]=X(\omega)=\int_{βˆ’\infty}^{\infty}x(t)e^{-j\omega t}dt=\int_{βˆ’\infty}^{\infty}sin\:\omega_{0}\: t\: e^{-j\omega t}dt}$$$$\mathrm{ \Rightarrow\:X(\omega)=\int_{βˆ’\infty}^{\infty}\left[ \frac{e^{j\omega_{0} t}-e^{-j\omega_{0} t}}{2j}\right] ... Read More

Fourier Transform of Single-Sided Real Exponential Functions

Manish Kumar Saini

Manish Kumar Saini

Updated on 09-Dec-2021 06:53:42

3K+ Views

Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{X(\omega)= \int_{βˆ’\infty}^{\infty}x(t)e^{-j\omega t}dt}$$Fourier Transform of One-Sided Real Exponential FunctionA single-sided real exponential function is defined as, $$\mathrm{x(t)=e^{-a t}u(t)}$$Where, $u(t)$ is the unit step signal and is defined as, $$\mathrm{u(t)=\begin{cases}1 & for\:tβ‰₯ 0 \0 & for\:t < 0 ... Read More

Fourier Transform of Signum Function

Manish Kumar Saini

Manish Kumar Saini

Updated on 09-Dec-2021 06:50:10

14K+ Views

Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{X(\omega)=\int_{βˆ’\infty}^{\infty}x(t)e^{-j\omega t}dt}$$Fourier Transform of Signum FunctionThe signum function is represented by $sgn(t)$ and is defined as$$\mathrm{sgn(t)=\begin{cases}1 & for\:t>0\-1 & for\:tRead More

Fourier Transform of Rectangular Function

Manish Kumar Saini

Manish Kumar Saini

Updated on 08-Dec-2021 07:21:30

40K+ Views

Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{X(\omega)=\int_{βˆ’\infty}^{\infty}x(t)e^{-j\omega t}\:dt}$$Fourier Transform of Rectangular FunctionConsider a rectangular function as shown in Figure-1.It is defined as, $$\mathrm{rect\left(\frac{t}{Ο„}\right)=\prod\left(\frac{t}{Ο„}\right)=\begin{cases}1 & for\:|t|≀ \left(\frac{Ο„}{2}\right)\0 & otherwise\end{cases}}$$Given that$$\mathrm{x(t)=\prod\left(\frac{t}{Ο„}\right)}$$Hence, from the definition of Fourier transform, we have, $$\mathrm{F\left[\prod\left(\frac{t}{Ο„}\right) \right]=X(\omega)=\int_{βˆ’\infty}^{\infty}x(t)e^{-j\omega t}\:dt=\int_{βˆ’\infty}^{\infty}\prod\left(\frac{t}{Ο„}\right)e^{-j\omega t}\:dt}$$$$\mathrm{\Rightarrow\:X(\omega)=\int_{βˆ’(Ο„/2)}^{(Ο„/2)}1\cdot e^{-j\omega t}\:dt=\left[\frac{e^{-j\omega ... Read More

Fourier Transform of a Triangular Pulse

Manish Kumar Saini

Manish Kumar Saini

Updated on 08-Dec-2021 07:13:24

11K+ Views

Fourier TransformThe Fourier transform of a continuous-time function $x(t)$ can be defined as, $$\mathrm{X(\omega)=\int_{βˆ’\infty}^{\infty}x(t)\:e^{-j\omega t}dt}$$Fourier Transform of a Triangular PulseA triangular signal is shown in Figure-1 βˆ’And it is defined as, $$\mathrm{\Delta \left(\frac{t}{Ο„}\right)=\begin{cases}\left( 1+\frac{2t}{Ο„}\right); & for\:\left(-\frac{Ο„}{2}\right) Read More

Expressions for the Trigonometric Fourier Series Coefficients

Manish Kumar Saini

Manish Kumar Saini

Updated on 08-Dec-2021 07:04:21

2K+ Views

The infinite series of sine and cosine terms of frequencies $0, \omega_{0}, 2\omega_{0}, 3\omega_{0}, ....k\omega_{0}$is known as trigonometric Fourier series and can written as, $$\mathrm{x(t)=a_{0}+\sum_{n=1}^{\infty}a_{n}\:cos\:n\omega_{0} t+b_{n}\:sin\:n\omega_{0} t… (1)}$$Here, the constant $a_{0}, a_{n}$ and $b_{n}$ are called trigonometric Fourier series coefficients.Evaluation of a0To evaluate the coefficient $a_{0}$, we shall integrate the ... Read More

Advertisements