Input −Assume, sample DataFrame is, Id Name 0 1 Adam 1 2 Michael 2 3 David 3 4 Jack 4 5 PeterOutputput −Random row is Id 5 Name PeterSolutionTo solve this, we will follow the below approaches.Define a DataFrameCalculate the number of rows using df.shape[0] and assign to rows variable.set random_row value from randrange method as shown below.random_row = r.randrange(rows)Apply random_row inside iloc slicing to generate any random row in a DataFrame. It is defined below, df.iloc[random_row, :]ExampleLet us see the following implementation to get a better understanding.import pandas as pd import random as r data = { ... Read More
Input −Assume, sample DataFrame is, Id Name 0 1 Adam 1 2 Michael 2 3 David 3 4 Jack 4 5 PeterOutput −After, sorting the elements in descending order as, Id Name 4 5 Peter 1 2 Michael 3 4 Jack 2 3 David 0 1 AdamSolutionTo solve this, we will follow the below approaches.Define a DataFrameApply DataFrame sort_values method based on Name column and add argument ascending=False to show the data in descending order. It is defined below, df.sort_values(by='Name', ascending=False)ExampleLet us see the following implementation to get a better understanding.import pandas as pd data = {'Id': [1, ... Read More
Input −Assume, sample DataFrame is, Id Age salary 0 1 27 40000 1 2 22 25000 2 3 25 40000 3 4 23 35000 4 5 24 30000 5 6 32 30000 6 7 30 50000 7 8 28 20000 8 9 29 32000 9 10 27 23000Output −Result for mean and product of given slicing rows are, mean is Age 23.333333 salary 33333.333333 product is Age 12650 salary 35000000000000SolutionTo solve this, we will follow the below approaches.Define ... Read More
Input −Assume, you have a DataFrame, Id Age 0 1 21 1 2 23 2 3 32 3 4 35 4 5 18Output −Total number of age between 20 to 30 is 2.SolutionTo solve this, we will follow the below approaches.Define a DataFrameSet the DataFrame Age column between 20,30. Store it in result DataFrame. It is defined below,df[df['Age'].between(20,30)]Finally, calculate the length of the result.ExampleLet us see the following implementation to get a better understanding.import pandas as pd data = {'Id':[1,2,3,4,5],'Age':[21,23,32,35,18]} df = pd.DataFrame(data) print(df) print("Count the age between 20 to 30") result = df[df['Age'].between(20,30)] print(len(result))Output Id Age 0 1 21 1 2 23 2 3 32 3 4 35 4 5 18 Count the age between 20 to 30 2
Input −Assume, you have DataFrame, Id Name Grade 0 1 stud1 A 1 2 stud2 B 2 3 stud3 C 3 4 stud4 A 4 5 stud5 AOutput −And the result for ‘A’ grade students name, 0 stud1 3 stud4 4 stud5SolutionTo solve this, we will follow the below approaches.Define a DataFrameCompare the value to the DataFramedf[df['Grade']=='A']Store the result in another DataFrame and fetch Name.ExampleLet us see the following implementation to get a better understanding.import pandas as pd data = [[1, 'stud1', 'A'], [2, 'stud2', 'B'], [3, 'stud3', 'C'], [4, 'stud4', 'A'], ... Read More
Input −Assume, you have a DataFrameDataFrame is Id Age Salary 0 1 27 40000 1 2 22 25000 2 3 25 40000 3 4 23 35000 4 5 24 30000 5 6 32 30000 6 7 30 50000 7 8 28 20000 8 9 29 32000 9 10 27 23000Output −And, the result for a minimum age of an employee id and salary, Id Salary 1 2 25000SolutionTo solve this, we will follow the below approaches.Define a DataFrameSet ... Read More
Input −Assume, we have a Series like this, [“one”, “two”, “eleven”, “pomegranates”, “three”] and the maximum length of the string is “Pomegranates”SolutionTo solve this, we will follow the below approaches.Define a SeriesSet the initial value of a maxlen is 0Set the “maxstr” value is initially empty string.Create a for loop and access all the values in the Series one by one and create an if condition to compare the value based on the length as follows −for i in res: if(len(i)>maxlen): maxlen = len(i) maxstr = iFinally, print the value stored in the ... Read More
Input −Assume, you have a Series,0 11 1 12 2 66 3 24 4 80 5 40 6 28 7 50Output −Maximum value for first four row is 66.SolutionTo solve this, we will follow the steps given below −Define a SeriesSet rows value as data.iloc[0:4].Finally, find the max value from the rows series.ExampleLet us see the complete implementation to get a better understanding −import pandas as pd l = [11,12,66,24,80,40,28,50] data = pd.Series(l) rows = data.iloc[0:4] print(rows.max())Output66
Input −Assume, you have a Series,0 1.3 1 2.6 2 3.9 3 4.8 4 5.6Output −0 1.0 1 3.0 2 4.0 3 5.0 4 6.0Solution 1Define a SeriesCreate an empty list. Set the for loop to iter the data. Append round of values to the list.Finally, add the elements to the series.ExampleLet us see the complete implementation to get a better understanding −import pandas as pd l = [1.3,2.6,3.9,4.8,5.6] data = pd.Series(l) print(data.round())Output0 1.0 1 3.0 2 4.0 3 5.0 4 6.0Solution 2Exampleimport pandas as pd l = [1.3,2.6,3.9,4.8,5.6] data = pd.Series(l) ls = [] for i,j in data.items(): ls.append(round(j)) result = pd.Series(ls) print(result)Output0 1 1 3 2 4 3 5 4 6
Input −Assume, you have date series to find the number of days in a month.SolutionTo solve this, we will follow the steps given below −Define date seriesSet date_range value as 2020-02-10.find the number of days in a month using Series.dt.daysinmonthExampleLet us see the complete implementation to get a better understanding −import pandas as pd date = pd.date_range('2020-02-10',periods=1) data = pd.Series(date) print(data.dt.daysinmonth)Output0 29