- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Using the formula for squaring a binomial, evaluate the following:
(i) $(102)^2$
(ii) $(99)^2$
(iii) $(1001)^2$
(iv) $(999)^2$
(v) $(703)^2$
To do:
We have to evaluate the given expressions using the formula for squaring a binomial.
Solution:
Here, we have to find the squares of some large numbers. We can find the squares of multiples of $10^n$ easily. So, express the given numbers as the sum of multiples of $10^n$ and other numbers. We can then find the squares of the given numbers by expanding the squares using the algebraic expressions:
$(a+b)^2 = a^2+2ab+b^2$
$(a-b)^2 = a^2-2ab+b^2$
(i) The given expression is $(102)^2$.
$102$ can be written as $100+2$
We know that,
$(a+b)^2 = a^2+2ab+b^2$
Here, $a=100$ and $b=2$
Therefore,
$(100+2)^2=(100)^2+2\times100\times2+2^2$
$(100+2)^2=10000+400+4$
$(100+2)^2=10404$
Hence, $(102)^2=10404$.
(ii) The given expression is $(99)^2$.
$99$ can be written as $100-1$
We know that,
$(a-b)^2 = a^2-2ab+b^2$
Here, $a=100$ and $b=1$
Therefore,
$(100-1)^2=(100)^2-2\times100\times1+1^2$
$(100-1)^2=10000-200+1$
$(100-1)^2=10001-200$
$(100-1)^2=9801$
Hence, $(99)^2=9801$.
(iii) The given expression is $(1001)^2$.
$1001$ can be written as $1000+1$
We know that,
$(a+b)^2 = a^2+2ab+b^2$
Here, $a=1000$ and $b=1$
Therefore,
$(1000+1)^2=(1000)^2+2\times1000\times1+1^2$
$(1000+1)^2=1000000+2000+1$
$(1000+1)^2=1002001$
Hence, $(1001)^2=1002001$.
(iv) The given expression is $(999)^2$.
$999$ can be written as $1000-1$
We know that,
$(a-b)^2 = a^2-2ab+b^2$
Here, $a=1000$ and $b=1$
Therefore,
$(1000-1)^2=(1000)^2-2\times1000\times1+1^2$
$(1000-1)^2=1000000-2000+1$
$(1000-1)^2=1000001-2000$
$(1000-1)^2=998001$
Hence, $(999)^2=998001$.
(v) The given expression is $(703)^2$.
$703$ can be written as $700+3$
We know that,
$(a+b)^2 = a^2+2ab+b^2$
Here, $a=700$ and $b=3$
Therefore,
$(700+3)^2=(700)^2+2\times700\times3+3^2$
$(700+3)^2=490000+4200+9$
$(700+3)^2=494209$
Hence, $(703)^2=494209$.
- Related Articles
- Find the squares of the following numbers using the identity $(a - b)^2 = a^2 - 2ab + b^2$:(i) 395(ii) 995(iii) 495(iv) 498(v) 99(vi) 999(vii) 599.
- Find the squares of the following numbers using the identity $(a + b)^2 = a^2 + 2ab + b^2$(i) 405(ii) 510(iii) 1001(iv) 209(v) 605.
- Observe the following pattern:$2^2 – 1^2 = 2 + 1$$3^2 – 2^2 = 3 + 2$$4^2 – 3^2 = 4 + 3$$5^2 – 4^2 = 5 + 4$Find the value of(i) $100^2 – 99^2$(ii) $111^2 – 109^2$(iii) $99^2 – 96^2$
- Simplify the following using the formula: $(a - b) (a + b) = a^2 - b^2$:(i) $(82)^2 – (18)^2$(ii) $(467)^2 – (33)^2$(iii) $(79)^2 – (69)^2$(iv) $197 \times 203$(v) $113 \times 87$(vi) $95 \times 105$(vii) $1.8 \times 2.2$(viii) $9.8 \times 10.2$
- Find the following squares by using the identities:$( i)$. $( b-7)^{2}$$( ii)$. $( xy+3z)^{2}$$( iii)$. $( 6x^{2}-5 y)^{2}$$( iv)$. $(\frac{2}{3}m+\frac{3}{2}n)^{2}$$( v)$. $( 0.4p-0.5q)^{2}$$( vi)$. $( 2xy+5y)^{2}$
- Evaluate the following using suitable identities:(i) \( (99)^{3} \)(ii) \( (102)^{3} \)(iii) \( (998)^{3} \)
- Multiply the monomial by the binomial and find the value of each for $x = -1, y = 0.25$ and $z =0.05$:(i) $15y^2 (2 - 3x)$(ii) $-3x (y^2 + z^2)$(iii) $z^2 (x - y)$(iv) $xz (x^2 + y^2)$
- If $m=2$, find the value of:$(i)$. $m-2$$(ii)$. $3m-5$$(iii)$. $9-5m$$(iv)$. $3m^2-2m-7$$(v)$. $\frac{5m}{2}-4$
- Write the coefficients of \( x^{2} \) in each of the following:(i) \( 2+x^{2}+x \)(ii) \( 2-x^{2}+x^{3} \)(iii) \( \frac{\pi}{2} x^{2}+x \)(iv) \( \sqrt{2} x-1 \)
- Factorize the following algebraic expressions:(i) $25x^2-10x+1-36y^2$(ii) $a^2-b^2+2bc-c^2$(iii) $a^2+2ab+b^2-c^2$
- Factorize the following algebraic expressions:(i) $49-x^2-y^2+2xy$(ii) $a^2+4b^2-4ab-4c^2$(iii) $x^2-y^2-4xz+4z^2$
- Expand each of the following, using suitable identities:(i) \( (x+2 y+4 z)^{2} \)(ii) \( (2 x-y+z)^{2} \)(iii) \( (-2 x+3 y+2 z)^{2} \)(iv) \( (3 a-7 b-c)^{2} \)(v) \( (-2 x+5 y-3 z)^{2} \)(vi) \( \left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2} \)
- If $a=2$ and $b=-2$ find the value of $(i)$. $a^2+b^2$$(ii)$. $a^2+ab+b^2$$(iii)$. $a^{2}-b^2$
- Find the value of the following expressions, when $x=-1$$(i)$. $2x-7$$(ii)$. $-x+2$$(iii)$. $x^2+2x+ 1$$(iv)$. $2x^2-x-2$
- Factorize the following algebraic expressions:(i) $25-p^2-q^2-2pq$(ii) $x^2+9y^2-6xy-25a^2$(iii) $49-a^2+8ab-16b^2$
