- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Evaluate the following using suitable identities:
(i) $ (99)^{3} $
(ii) $ (102)^{3} $
(iii) $ (998)^{3} $
To do:
We have to evaluate the given expressions using suitable identities.
Solution:
We know that,
$(a+b)^3=a^3 + b^3 + 3ab(a+b)$
$(a-b)^3= a^3-b^3-3ab(a-b)$
Therefore,
(i) $(99)^3 = (100 - 1)^3$
$= (100)^3 - (1)^3 - 3 \times 100 \times 1 (100 - 1)$
$= 1000000 - 1 - 300 \times 99$
$= 1000000 - 1 - 29700$
$= 1000000 - 29701$
$= 970299$
Hence, $(99)^3 = 970299$.
(ii) $(102)^3 = (100 + 2)^3$
$= (100)^3 + (2)^3 + 3 \times 100 \times 2 (100 + 2)$
$= 1000000 + 8 + 600 \times (100+2)$
$= 1000008 + 600\times100 + 600\times2$
$= 1000008 + 60000 + 1200$
$=1061208$
Hence, $(102)^3 = 1061208$.
(iii) $(998)^3 = (1000 - 2)^3$
$= (1000)^3 - (2)^3 - 3 \times 1000 \times 2 (1000 - 2)$
$= 1000000000 - 8 - 6000 \times (1000-2)$
$= 999999992 - 6000000+12000$
$= 999999992 -5988000$
$= 994011992$
Hence, $(998)^3 = 994011992$.