Observe the following pattern:
$2^2 – 1^2 = 2 + 1$
$3^2 – 2^2 = 3 + 2$
$4^2 – 3^2 = 4 + 3$
$5^2 – 4^2 = 5 + 4$
Find the value of
(i) $100^2 – 99^2$
(ii) $111^2 – 109^2$
(iii) $99^2 – 96^2$
To do:
We have to write the value of given expressions.
Solution:
We can observe that,
$2^2 – 1^2 = 2 + 1$
$3^2 – 2^2 = 3 + 2$
$4^2 – 3^2 = 4 + 3$
$5^2 – 4^2 = 5 + 4$
This implies,
(i) $m^2-n^2=m+n$
Therefore,
$100^2 – 99^2=100+99$.
(ii) $m^2-n^2=m+n$
$111^2 – 109^2$ can be written as,
$111^2 – 109^2=111^2-110^2+110^2-109^2$
Therefore,
$111^2 – 109^2=(111^2-110^2)+(110^2-109^2)$
$=(111+110)+(110+109)$
$=440$ 
(iii) $m^2-n^2=m+n$
$99^2 – 96^2$ can be written as,
$99^2 – 96^2=99^2-98^2+98^2-97^2+97^2-96^2$
Therefore,
$99^2 – 96^2=(99^2-98^2)+(98^2-97^2)+(97^2-96^2)$
$=(99+98)+(98+97)+(97+96)$
$=585$ 
- Related Articles
- Observe the following pattern\( 1^{2}=\frac{1}{6}[1 \times(1+1) \times(2 \times 1)+1)] \)\( 1^{2}+2^{2}=\frac{1}{6}[2 \times(2+1) \times(2 \times 2)+1)] \)\( 1^{2}+2^{2}+3^{2}=\frac{1}{6}[3 \times(3+1) \times(2 \times 3)+1)] \)\( 1^{2}+2^{2}+3^{2}+4^{2}=\frac{1}{6}[4 \times(4+1) \times(2 \times 4)+1)] \)and find the values of each of the following:(i) $1^2 + 2^2 + 3^2 + 4^2 +…………… + 10^2$(ii)$5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2$
- Observe the following pattern$1=\frac{1}{2}\{1 \times(1+1)\}$$1+2=\frac{1}{2}\{2 \times(2+1)\}$$1+2+3=\frac{1}{2}\{3 \times(3+1)\}$$1+2+3+4=\frac{1}{2}\{4 \times(4+1)\}$and find the values of each of the following:(i) $1 + 2 + 3 + 4 + 5 +….. + 50$(ii)$31 + 32 +… + 50$
- Following data gives the number of children in 41 families:$1, 2, 6, 5, 1, 5, 1, 3, 2, 6, 2, 3, 4, 2, 0, 0, 4, 4, 3, 2, 2, 0, 0, 1, 2, 2, 4, 3, 2, 1, 0, 5, 1, 2, 4, 3, 4, 1, 6, 2, 2.$Represent it in the form of a frequency distribution.
- Observe the following pattern\( (1 \times 2)+(2 \times 3)=\frac{2 \times 3 \times 4}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)=\frac{3 \times 4 \times 5}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)=\frac{4 \times 5 \times 6}{3} \)and find the value of\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)+(5 \times 6) \)
- Evalute:(i) $(5)^{-2}$(ii) $(-3)^{-2}$(iii) $(\frac{1}{3})^{-4}$(iv) $(\frac{-1}{2})^{-1}$
- Simplify:$(i)$. $2\times10^3$$(ii)$. $7^2\times2^2$$(iii)$. $2^3\times5$$(iv)$. $3\times4^4$$(v)$. $0\times10^2$$(vi)$. $5^2\times3^3$$(viii)$. $2^4\times3^2$$(viii)$. $3^2\times10^4$
- Simplify (i) +7 + 1 - 3 + 4 -2 - 5 + 7 - 2 + 1 -6 + 5(ii)+2 - 3 + 2 -5 + 1 - 3 + 8 - 4 + 3
- Observe the following pattern$1 + 3 = 2^2$$1 + 3 + 5 = 3^2$$1+3 + 5 + 7 = 4^2$and write the value of $1 + 3 + 5 + 7 + 9 +…………$ upto $n$ terms.
- Simplify:$(i)$. $(-4)^3$$(ii)$. $(-3)\times(-2)^3$$(iii)$. $(-3)^2\times(-5)^2$$(iv)$. $(-2)^3\times(-10)^3$
- Sum of the series 1 + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+n) in C++
- Simplify:(i) \( \left(3^{2}+2^{2}\right) \times\left(\frac{1}{2}\right)^{3} \)(ii) \( \left(3^{2}-2^{2}\right) \times\left(\frac{2}{3}\right)^{-3} \)(iii) \( \left[\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right] \div\left(\frac{1}{4}\right)^{-3} \)(iv) \( \left(2^{2}+3^{2}-4^{2}\right) \div\left(\frac{3}{2}\right)^{2} \)
- Observe the following pattern.$2^{3}-1^{3}=1+2 \times 1 \times 3$$3^{2}-2^{3}=1+3 \times 2 \times 3$$4^{3}-3^{3}=1+4 \times 3 \times 3$Using this pattern, find the value of each of the following.$( a).\ 81^{3}-80^{3}$$( b).\ 100^{3}-99^{3}$
- Find: $\frac{1}{2}$ of (i) $2 \frac{3}{4}$ (ii) $4 \frac{2}{9}$.
- Simplify: \( \frac{2^{2} \times 3^{4} \times 2^{5}}{2^{4} \times 9} \)
- Identify the greater number, wherever possible, in each of the following?$(i)$. $4^{3}$ or $3^4$$(ii)$. $5^3$ or $3^5$$(iii)$. $2^8$ or $8^2$$(iv)$. $100^2$ or $2^{100}$$(v)$. $2^{10}$ or $10^2$
Kickstart Your Career
Get certified by completing the course
Get Started