- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Simplify the following using the formula: $(a - b) (a + b) = a^2 - b^2$:
(i) $(82)^2 – (18)^2$
(ii) $(467)^2 – (33)^2$
(iii) $(79)^2 – (69)^2$
(iv) $197 \times 203$
(v) $113 \times 87$
(vi) $95 \times 105$
(vii) $1.8 \times 2.2$
(viii) $9.8 \times 10.2$
Given:
(i) $(82)^2 – (18)^2$
(ii) $(467)^2 – (33)^2$
(iii) $(79)^2 – (69)^2$
(iv) $197 \times 203$
(v) $113 \times 87$
(vi) $95 \times 105$
(vii) $1.8 \times 2.2$
(viii) $9.8 \times 10.2$
To do:
We have to simplify the given expressions using the formula: $(a – b) (a + b) = a^2 – b^2$
Solution:
Here, we have to simplify the given expressions using the formula $(a – b) (a + b) = a^2 – b^2$. The given expressions can be written as the difference of two squares by writing the terms as the sum or difference of two suitable numbers.
(i) The given expression is $(82)^2 – (18)^2$
Here, $a=82$ and $b=18$
Therefore,
$(82)^2 – (18)^2=(82-18)\times(82+18)$
$(82)^2 – (18)^2=64\times100$
$(82)^2 – (18)^2=6400$
Hence, $(82)^2 – (18)^2=6400$.
(ii) The given expression is $(467)^2 – (33)^2$
Here, $a=467$ and $b=33$
Therefore,
$(467)^2 – (33)^2=(467-33)\times(467+33)$
$(467)^2 – (33)^2=434\times500$
$(467)^2 – (33)^2=434\times5\times100$ ($500=5\times100$)
$(467)^2 – (33)^2=434\times100\times5$ [$a \times (b \times c)= (a \times c) \times b$]
$(467)^2 – (33)^2=43400\times5$
$(467)^2 – (33)^2=217000$
Hence, $(467)^2 – (33)^2=217000$.
(iii) The given expression is $(79)^2 – (69)^2$
Here, $a=82$ and $b=18$
Therefore,
$(79)^2 – (69)^2=(79-69)\times(79+69)$
$(79)^2 – (69)^2=10\times148$
$(79)^2 – (69)^2=1480$
Hence, $(79)^2 – (69)^2=1480$.
(iv) The given expression is $197 \times 203$
We can write $197$ as $197=200-3$ and $203$ as $203=200+3$
Here, $a=200$ and $b=3$
Therefore,
$197 \times 203=(200-3)\times(200+3)$
$197 \times 203=(200)^2-(3)^2$
$197 \times 203=40000-9$
$197 \times 203=39991$
Hence, $197 \times 203=39991$.
(v) The given expression is $113 \times 87$
We can write $113$ as $113=100+13$ and $87$ as $87=100-13$
Here, $a=100$ and $b=13$
Therefore,
$113 \times 87=(100+13)\times(100-13)$
$113 \times 87=(100)^2-(13)^2$
$113 \times 87=10000-169$
$113 \times 87=9831$
Hence, $113 \times 87=9831$.
(vi) The given expression is $95 \times 105$
We can write $95$ as $95=100-5$ and $105$ as $105=100+5$
Here, $a=100$ and $b=5$
Therefore,
$95 \times 105=(100-5)\times(100+5)$
$95 \times 105=(100)^2-(5)^2$
$95 \times 105=10000-25$
$95 \times 105=9975$
Hence, $95 \times 105=9975$.
(vii) The given expression is $1.8 \times 2.2$
We can write $1.8$ as $1.8=2-0.2$ and $2.2$ as $2.2=2+0.2$
Here, $a=2$ and $b=0.2$
Therefore,
$1.8 \times 2.2=(2-0.2)\times(2+0.2)$
$1.8 \times 2.2=(2)^2-(0.2)^2$
$1.8 \times 2.2=4-0.04$
$1.8 \times 2.2=3.96$
Hence, $1.8 \times 2.2=3.96$.
(viii) The given expression is $9.8 \times 10.2$
We can write $9.8$ as $9.8=10-0.2$ and $10.2$ as $10.2=10+0.2$
Here, $a=10$ and $b=0.2$
Therefore,
$9.8 \times 10.2=(10-0.2)\times(10+0.2)$
$9.8 \times 10.2=(10)^2-(0.2)^2$
$9.8 \times 10.2=100-0.04$
$9.8 \times 10.2=99.96$
Hence, $9.8 \times 10.2=99.96$.
- Related Articles
- Simplify:$(i)$. $(-4)^3$$(ii)$. $(-3)\times(-2)^3$$(iii)$. $(-3)^2\times(-5)^2$$(iv)$. $(-2)^3\times(-10)^3$
- In which of the following expressions, prime factorisation has been done?(a) \( 24=2 \times 3 \times 4 \)(b) $56 = 7 \times 2 \times 2 \times 2$(c) $70 = 2 \times 5 \times 7$ (d) $54 = 2 \times 3 \times 9$
- Simplify: \( \frac{2^{2} \times 3^{4} \times 2^{5}}{2^{4} \times 9} \)
- Observe the following pattern\( 1^{2}=\frac{1}{6}[1 \times(1+1) \times(2 \times 1)+1)] \)\( 1^{2}+2^{2}=\frac{1}{6}[2 \times(2+1) \times(2 \times 2)+1)] \)\( 1^{2}+2^{2}+3^{2}=\frac{1}{6}[3 \times(3+1) \times(2 \times 3)+1)] \)\( 1^{2}+2^{2}+3^{2}+4^{2}=\frac{1}{6}[4 \times(4+1) \times(2 \times 4)+1)] \)and find the values of each of the following:(i) $1^2 + 2^2 + 3^2 + 4^2 +…………… + 10^2$(ii)$5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2$
- Using suitable identity, evaluate the following.(a) \( (102)^{2} \)(b) \( (98)^{2} \)(c) \( 104 \times 105 \)(d) \( 215^{2}-205^{2} \)(e) \( 100.4 \times 99.6 \)(f) \( \frac{5.27 \times 5.27-0.27 \times 0.27}{5.54} \)
- Express the following in exponential form:$(i)$. $6\times6\times6\times6$$(ii)$. $t\times t$$(iii)$. $b\times b\times b\times b$$(iv)$. $5\times5\times7\times7\times7$$(v)$. $2\times2\times a\times a$$(vi)$. $a\times a\times a\times c\times c\times c\times c\times d$
- Find the products of the following monomials.a. \( (-6) x^{2} \times 7 x y \)b. \( 2 a b \times(-6) a b \)c. \( \left(-4 x^{2} y^{2}\right) \times 3 x^{2} y^{2} \)d. \( 9 x y z \times 2 z^{3} \)
- Find:$(i).\ 0.2 \times 6$$(ii).\ 8 \times 4.6$$(iii).\ 2.71 \times 5$ $(iv).\ 20.1 \times 4$$(v).\ 0.05 \times 7$$(vi). 211.02 \times 4$$(vii).\ 2 \times 0.86$
- Simplify the following:a. $3 \times 10^2$ b. $2^5 \times 5^3$c. $0 \times 10^4$
- Simplify the following:$8^7 \times 8^2 \times (8^3)^2$
- Simplify the following:$(-3) \times(-6) \times(-2) \times(-1)$.
- Find the following product.$(-4x^2) \times (-6xy^2) \times (-3yz^2)$
- Evaluate\( \left(\frac{2}{5} a^{2} b\right) \times\left(-15 b^{2} a c\right) \times\left(\frac{-1}{2}\right) c^{2} \)
- Mention the property used in the following expression:$(-2) \times[3 \times(\frac{1}{2})]]=[[(-2) \times 3] \times(\frac{1}{2})$.
- Observe the following pattern\( (1 \times 2)+(2 \times 3)=\frac{2 \times 3 \times 4}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)=\frac{3 \times 4 \times 5}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)=\frac{4 \times 5 \times 6}{3} \)and find the value of\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)+(5 \times 6) \)
