Expand each of the following, using suitable identities:
(i) $ (x+2 y+4 z)^{2} $
(ii) $ (2 x-y+z)^{2} $
(iii) $ (-2 x+3 y+2 z)^{2} $
(iv) $ (3 a-7 b-c)^{2} $
(v) $ (-2 x+5 y-3 z)^{2} $
(vi) $ \left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2} $
To do:
We have to expand each of the given expressions using suitable identities.
Solution:
We know that,
$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$
Therefore,
(i) \( (x+2 y+4 z)^{2} \)
Here, $a=x, b=2y$ and $c=4z$
$(x+2 y+4 z)^{2}=(x)^2+(2y)^2+(4z)^2+2(x)(2y)+2(2y)(4z)+2(4z)(x)$
$=x^2+4y^2+16z^2+4xy+16yz+8xz$
(ii) \( (2 x-y+z)^{2} \)
Here, $a=2x, b=-y$ and $c=z$
$(2 x-y+z)^{2}=(2x)^2+(-y)^2+(z)^2+2(2x)(-y)+2(-y)(z)+2(z)(2x)$
$=4x^2+y^2+z^2-4xy-2yz+4xz$
(iii) \( (-2 x+3 y+2 z)^{2} \)
Here, $a=-2x, b=3y$ and $c=2z$
$(-2 x+3 y+2 z)^{2}=(-2x)^2+(3y)^2+(2z)^2+2(-2x)(3y)+2(3y)(2z)+2(2z)(-2x)$
$=4x^2+9y^2+4z^2-12xy+12yz-8xz$
(iv) \( (3 a-7 b-c)^{2} \)
Here, $a=3a, b=-7b$ and $c=-c$
$(3 a-7b-c)^{2}=(3a)^2+(-7b)^2+(-c)^2+2(3a)(-7b)+2(-7b)(-c)+2(-c)(3a)$
$=9a^2+49y^2+c^2-42ab+14bc-6ac$
(v) \( (-2 x+5 y-3 z)^{2} \)
Here, $a=-2x, b=5y$ and $c=-3z$
$(-2 x+5 y-3 z)^{2}=(-2x)^2+(5y)^2+(-3z)^2+2(-2x)(5y)+2(5y)(-3z)+2(-3z)(-2x)$
$=4x^2+25y^2+9z^2-20xy-30yz+12xz$
(vi) \( \left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2} \)
Here, $a=\frac{1}{4} a, b=-\frac{1}{2} b$ and $c=1$
$[\frac{1}{4} a-\frac{1}{2} b+1]^{2}=(\frac{1}{4} \mathrm{a})^{2}+(-\frac{1}{2} b)^{2}+(1)^{2}+2 \times \frac{1}{4}a \times(-\frac{1}{2} b)+2 \times(-\frac{1}{2} b) \times 1+2 \times 1 \times \frac{1}{4} a$
$=\frac{1}{16} a^{2}+\frac{1}{4}b^{2}+1^{2}-\frac{2}{8}ab-\frac{2}{2} b+\frac{2}{4}a$
$=\frac{1}{16}a^{2}+\frac{1}{4}b^{2}+1-\frac{1}{4} ab-b+\frac{1}{2} a$
- Related Articles
- Verify that \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- Simplify each of the following expressions:\( (x+y+z)^{2}+\left(x+\frac{y}{2}+\frac{z}{3}\right)^{2}-\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}\right)^{2} \)
- (i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
- Verify associativity of addition of rational numbers i.e., $(x + y) + z = x + (y + z)$, when:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- Subtract:(i) $-5xy$ from $12xy$(ii) $2a^2$ from $-7a^2$(iii) \( 2 a-b \) from \( 3 a-5 b \)(iv) \( 2 x^{3}-4 x^{2}+3 x+5 \) from \( 4 x^{3}+x^{2}+x+6 \)(v) \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) from \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)(vi) \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) from \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)(vii) \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) from \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)(viii) \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \) from \( \frac{3}{5} b c-\frac{4}{5} a c \)
- Find the following products:\( \frac{-4}{27} x y z\left[\frac{9}{2} x^{2} y z-\frac{3}{4} x y z^{2}\right] \)
- Find the product of the following binomials:(i) \( (2 x+y)(2 x+y) \)(ii) \( (a+2 b)(a-2 b) \)(iii) \( \left(a^{2}+b c\right)\left(a^{2}-b c\right) \)(iv) \( \left(\frac{4 x}{5}-\frac{3 y}{4}\right)\left(\frac{4 x}{5}+\frac{3 y}{4}\right) \)(v) \( \left(2 x+\frac{3}{y}\right)\left(2 x-\frac{3}{y}\right) \)(vi) \( \left(2 a^{3}+b^{3}\right)\left(2 a^{3}-b^{3}\right) \)(vii) \( \left(x^{4}+\frac{2}{x^{2}}\right)\left(x^{4}-\frac{2}{x^{2}}\right) \)(viii) \( \left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{3}-\frac{1}{x^{3}}\right) \).
- Simplify each of the following expressions:\( (x+y-2 z)^{2}-x^{2}-y^{2}-3 z^{2}+4 x y \)
- Find the following products:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- Find the following products:(i) $(x + 4) (x + 7)$(ii) $(x - 11) (x + 4)$(iii) $(x + 7) (x - 5)$(iv) $(x - 3) (x - 2)$(v) $(y^2 - 4) (y^2 - 3)$(vi) $(x + \frac{4}{3}) (x + \frac{3}{4})$(vii) $(3x + 5) (3x + 11)$(viii) $(2x^2 - 3) (2x^2 + 5)$(ix) $(z^2 + 2) (z^2 - 3)$(x) $(3x - 4y) (2x - 4y)$(xi) $(3x^2 - 4xy) (3x^2 - 3xy)$(xii) $(x + \frac{1}{5}) (x + 5)$(xiii) $(z + \frac{3}{4}) (z + \frac{4}{3})$(xiv) $(x^2 + 4) (x^2 + 9)$(xv) $(y^2 + 12) (y^2 + 6)$(xvi) $(y^2 + \frac{5}{7}) (y^2 - \frac{14}{5})$(xvii) $(p^2 + 16) (p^2 - \frac{1}{4})$
- Simplify:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Factorise:(i) \( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)(ii) \( 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \)
- Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- Find the product of $(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$ and verify the result for ; $x=2, y=3$ and $z=-1$
Kickstart Your Career
Get certified by completing the course
Get Started