- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the squares of the following numbers using the identity $(a + b)^2 = a^2 + 2ab + b^2$
(i) 405
(ii) 510
(iii) 1001
(iv) 209
(v) 605.
To find:
We have to find the squares of the given numbers using the identity $(a + b)^2 = a^2 + 2ab + b^2$.
Solution:
We know that,
$(a+b)^2=a^2+2ab+b^2$
(i) $405$ can be written as,
$=400+5$
Therefore,
$(405)^2=(400+5)^2$
$=(400)^2+2\times400\times5+(5)^2$
$=160000+4000+25$
$= 164025$
(ii) $510$ can be written as,
$=500+10$
Therefore,
$(510)^2=(500+10)^2$
$=(500)^2+2\times500\times10+(10)^2$
$=250000+10000+100$
$= 260100$
(iii) $1001$ can be written as,
$=1000+1$
Therefore,
$(1001)^2=(1000+1)^2$
$=(1000)^2+2\times1000\times1+(1)^2$
$=1000000+2000+1$
$= 1002001 $
(iv) $209$ can be written as,
$=200+9$
Therefore,
$(209)^2=(200+9)^2$
$=(200)^2+2\times200\times9+(9)^2$
$=40000+3600+81$
$= 43681$
(v) $605$ can be written as,
$=600+5$
Therefore,
$(605)^2=(600+5)^2$
$=(600)^2+2\times600\times5+(5)^2$
$=360000+6000+25$
$= 366025$