# The fourth vertex $\mathrm{D}$ of a parallelogram $\mathrm{ABCD}$ whose three vertices are $\mathrm{A}(-2,3), \mathrm{B}(6,7)$ and $\mathrm{C}(8,3)$ is(A) $(0,1)$(B) $(0,-1)$(C) $(-1,0)$(D) $(1,0)$

#### Complete Python Prime Pack

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack

9 Courses     2 eBooks

Given:

Three vertices of a parallelogram $\mathrm{ABCD}$ are $\mathrm{A}(-2,3), \mathrm{B}(6,7)$ and $\mathrm{C}(8,3)$

To do:

We have to find the fourth vertex $\mathrm{D}$.

Solution:

Let the fourth vertex of the parallelogram be $D(x_4 ,y_4)$ and the

We know that,

The diagonals of a parallelogram bisect each other.

Let the point of intersection of the diagonals be $O(x, y)$

The mid-point of the line segment joining the points $A (-2, 3)$ and $C(8, 3)$ is,

Using mid-point formula, we have

$O( x,\ y)=( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2})$

$=( \frac{-2+8}{2}, \frac{3+3}{2})$

$=( \frac{6}{2}, \frac{6}{2})$

$=( 3, 3)$

$O(x,y)$ is also the mid-point of the line segment joining the points $B(6, 7)$ and $D(x_4, y_4)$

This implies,

$O(3, 3)=( \frac{6+x_4}{2}, \frac{7+y_4}{2})$

$\Rightarrow 3=\frac{6+x_4}{2}, 3= \frac{7+y_4}{2}$

$6+x_4=3(2), 7+y_4=3(2)$

$x_4=6-6, y_4=6-7$

$x_4=0, y_4=-1$

The fourth vertex $\mathrm{D}$ is $(0, -1)$.

Updated on 10-Oct-2022 13:28:26