State whether the following statements are true or false. Justify your answer. Points $ \mathrm{A}(4,3), \mathrm{B}(6,4), \mathrm{C}(5,-6) $ and $ \mathrm{D}(-3,5) $ are the vertices of a parallelogram.
Given:
Points \( \mathrm{A}(4,3), \mathrm{B}(6,4), \mathrm{C}(5,-6) \) and \( \mathrm{D}(-3,5) \) are the vertices of a parallelogram.
To do:
We have to find whether the given statement is true or false.
Solution:
The distance between $A(4,3)$ and $B(6,4)$ is,
$A B=\sqrt{(6-4)^{2}+(4-3)^{2}}$
$=\sqrt{2^{2}+1^{2}}$
$=\sqrt{5}$
The distance between $B(6,4)$ and $C(5,-6)$ is, $B C=\sqrt{(5-6)^{2}+(-6-4)^{2}}$
$=\sqrt{(-1)^{2}+(-10)^{2}}$
$=\sqrt{1+100}$
$=\sqrt{101}$
The distance between $C(5,-6)$ and $D(-3,5)$ is,
$C D =\sqrt{(-3-5)^{2}+(5+6)^{2}}$
$=\sqrt{(-8)^{2}+11^{2}}$
$=\sqrt{64+121}$
$=\sqrt{185}$
The distance between $D(-3,5)$ and $A(4,3)$ is,
$D A=\sqrt{(4+3)^{2}+(3-5)^{2}}$
$=\sqrt{7^{2}+(-2)^{2}}$
$=\sqrt{49+4}$
$=\sqrt{53}$
Here, the lengths of AB, BC, CD and DA are all not equal to each other.
We know that, in a parallelogram opposite sides are equal.
Hence, the given vertices are not the vertices of a parallelogram.
Related Articles State whether the following statements are true or false. Justify your answer.Points \( \mathrm{A}(3,1), \mathrm{B}(12,-2) \) and \( \mathrm{C}(0,2) \) cannot be the vertices of a triangle.
State whether the following statements are true or false. Justify your answer.\( \triangle \mathrm{ABC} \) with vertices \( \mathrm{A}(-2,0), \mathrm{B}(2,0) \) and \( \mathrm{C}(0,2) \) is similar to \( \triangle \mathrm{DEF} \) with vertices \( D(-4,0) E(4,0) \) and \( F(0,4) \).
The fourth vertex \( \mathrm{D} \) of a parallelogram \( \mathrm{ABCD} \) whose three vertices are \( \mathrm{A}(-2,3), \mathrm{B}(6,7) \) and \( \mathrm{C}(8,3) \) is(A) \( (0,1) \)(B) \( (0,-1) \)(C) \( (-1,0) \)(D) \( (1,0) \)
Consider the following figure of line \( \overline{\mathrm{MN}} \). Say whether following statements are true or false in context of the given figure.(a) \( \mathrm{Q}\)
State whether the following statements are true or false. Justify your answer.Points \( A(-6,10), B(-4,6) \) and \( C(3,-8) \) are collinear such that \( A B=\frac{2}{9} A C \).
A \( (6,1), \mathrm{B}(8,2) \) and \( \mathrm{C}(9,4) \) are three vertices of a parallelogram \( \mathrm{ABCD} \). If \( \mathrm{E} \) is the midpoint of DC, find the area of \( \Delta \mathrm{ADE} \)
The points \( \mathrm{A}(2,9), \mathrm{B}(a, 5) \) and \( \mathrm{C}(5,5) \) are the vertices of a triangle \( \mathrm{ABC} \) right angled at \( \mathrm{B} \). Find the values of \( a \) and hence the area of \( \triangle \mathrm{ABC} \).
Write 'True' or 'False' and justify your answer in each of the following:If \( \cos \mathrm{A}+\cos ^{2} \mathrm{~A}=1 \), then \( \sin ^{2} \mathrm{~A}+\sin ^{4} \mathrm{~A}=1 \).
In \( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DEF}, \mathrm{AB}=\mathrm{DE}, \mathrm{AB} \| \mathrm{DE}, \mathrm{BC}=\mathrm{EF} \) and \( \mathrm{BC} \| EF \). Vertices \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) are joined to vertices D, E and F respectively (see below figure).Show that(i) quadrilateral ABED is a parallelogram(ii) quadrilateral \( \mathrm{BEFC} \) is a parallelogram(iii) \( \mathrm{AD} \| \mathrm{CF} \) and \( \mathrm{AD}=\mathrm{CF} \)(iv) quadrilateral ACFD is a parallelogram(v) \( \mathrm{AC}=\mathrm{DF} \)(vi) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF} \)."
In \( \triangle \mathrm{ABC} \angle \mathrm{A} \) is a right angle and its vertices are \( \mathrm{A}(1,7), \mathrm{B}(2,4) \) and \( \mathrm{C}(k, 5) \). Then, find the value of \( k \).
State whether the following statements are true or false. Justify your answer.The point \( \mathrm{A}(2,7) \) lies on the perpendicular bisector of line segment joining the points \( P(6,5) \) and \( Q(0,-4) \).
\( \mathrm{ABCD} \) is a parallelogram and \( \mathrm{AP} \) and \( \mathrm{CQ} \) are perpendiculars from vertices \( \mathrm{A} \) and \( \mathrm{C} \) on diagonal \( \mathrm{BD} \) (see below figure). Show that(i) \( \triangle \mathrm{APB} \cong \triangle \mathrm{CQD} \)(ii) \( \mathrm{AP}=\mathrm{CQ} \)"\n
\( \mathrm{X}, \mathrm{Y} \) and \( \mathrm{Z} \) are the midpoints of the sides of \( \Delta \mathrm{PQR} . \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) are the midpoints of the sides of \( \triangle \mathrm{XYZ} \). If \( \mathrm{PQR}=240 \mathrm{~cm}^{2} \), find \( \mathrm{XYZ} \) and \( \mathrm{ABC} \).
DL and \( B M \) are the heights on sides \( A B \) and AD respectively of parallelogram \( \mathrm{ABCD} \) (Fig 11.24). If the area of the parallelogram \( \mathrm{A} \) is \( 1470 \mathrm{~cm}^{2}, \mathrm{AB}=35 \mathrm{~cm} \) and \( \mathrm{AD}=49 \mathrm{~cm} \), find the length of \( \mathrm{BM} \)"\n
State whether the following statements are true or false. Justify your answer.The point P $(–2, 4)$ lies on a circle of radius 6 and centre $C (3, 5)$.
Kickstart Your Career
Get certified by completing the course
Get Started