- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ \mathrm{B} $ is the mid point of $ \overline{\mathrm{AC}} $ and $ \mathrm{C} $ is the mid point of $ \overline{\mathrm{BD}} $, where $ \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} $ lie on a straight line, say why $ \mathrm{AB}=\mathrm{CD} $?
Given:
\( \mathrm{B} \) is the mid point of \( \overline{\mathrm{AC}} \) and \( \mathrm{C} \) is the mid point of \( \overline{\mathrm{BD}} \), where \( \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} \) lie on a straight line.
To do:
We have to say why \( \mathrm{AB}=\mathrm{CD} \).
Solution:
From the figure,
B is the midpoint of $AC$.
This implies,
$AB = BC$..........(i)
C is the midpoint of BD.
This implies,
$BC = CD$............(ii)
From (i) and (ii), we get,
$AB = CD$
Hence proved.
- Related Articles
- Verify, whether \( \mathrm{D} \) is the mid point of \( \overline{\mathrm{AG}} \)."
- \( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{C} \). A line through the mid-point \( \mathrm{M} \) of hypotenuse \( \mathrm{AB} \) and parallel to \( \mathrm{BC} \) intersects \( \mathrm{AC} \) at \( \mathrm{D} \). Show that(i) \( \mathrm{D} \) is the mid-point of \( \mathrm{AC} \)(ii) \( \mathrm{MD} \perp \mathrm{AC} \)(iii) \( \mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB} \)
- In figure below, line segment \( \mathrm{DF} \) intersect the side \( \mathrm{AC} \) of a triangle \( \mathrm{ABC} \) at the point \( \mathrm{E} \) such that \( \mathrm{E} \) is the mid-point of \( \mathrm{CA} \) and \( \angle \mathrm{AEF}=\angle \mathrm{AFE} \). Prove that \( \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{CE}} \)[Hint: Take point \( \mathrm{G} \) on \( \mathrm{AB} \) such that \( \mathrm{CG} \| \mathrm{DF} \).]"
- \( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{DC}, \mathrm{BD} \) is a diagonal and \( \mathrm{E} \) is the mid-point of \( \mathrm{AD} \). A line is drawn through E parallel to \( \mathrm{AB} \) intersecting \( \mathrm{BC} \) at \( \mathrm{F} \) (see below figure). Show that \( \mathrm{F} \) is the mid-point of \( \mathrm{BC} \)."\n
- Draw the perpendicular bisector of \( \overline{X Y} \) whose length is \( 10.3 \mathrm{~cm} \).(a) Take any point \( \mathrm{P} \) on the bisector drawn. Examine whether \( \mathrm{PX}=\mathrm{PY} \).(b) If \( \mathrm{M} \) is the mid point of \( \overline{\mathrm{XY}} \), what can you say about the lengths \( \mathrm{MX} \) and \( \mathrm{XY} \) ?
- Let \( \overline{\mathrm{PQ}} \) be the perpendicular to the line segment \( \overline{\mathrm{XY}} \). Let \( \overline{\mathrm{PQ}} \) and \( \overline{\mathrm{XY}} \) intersect in the point \( \mathrm{A} \). What is the measure of \( \angle \mathrm{PAY} \) ?
- \( \mathrm{O} \) is the point of intersection of the diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a trapezium \( \mathrm{ABCD} \) with \( \mathrm{AB} \| \mathrm{DC} \). Through \( \mathrm{O} \), a line segment \( \mathrm{PQ} \) is drawn parallel to \( \mathrm{AB} \) meeting \( \mathrm{AD} \) in \( \mathrm{P} \) and \( \mathrm{BC} \) in \( \mathrm{Q} \). Prove that \( \mathrm{PO}=\mathrm{QO} \).
- In right triangle \( \mathrm{ABC} \), right angled at \( \mathrm{C}, \mathrm{M} \) is the mid-point of hypotenuse \( \mathrm{AB} \). \( \mathrm{C} \) is joined to \( \mathrm{M} \) and produced to a point \( \mathrm{D} \) such that \( \mathrm{DM}=\mathrm{CM} \). Point \( \mathrm{D} \) is joined to point \( \mathrm{B} \) (see Fig. 7.23). Show that:(i) \( \triangle \mathrm{AMC} \equiv \triangle \mathrm{BMD} \)(ii) \( \angle \mathrm{DBC} \) is a right angle.(iii) \( \triangle \mathrm{DBC} \equiv \triangle \mathrm{ACB} \)(iv) \( \mathrm{CM}=\frac{1}{2} \mathrm{AB} \)"
- In figure below, \( l \| \mathrm{m} \) and line segments \( \mathrm{AB}, \mathrm{CD} \) and \( \mathrm{EF} \) are concurrent at point \( \mathrm{P} \).Prove that \( \frac{\mathrm{AE}}{\mathrm{BF}}=\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{CE}}{\mathrm{FD}} \)."
- Given \( \overline{\mathrm{AB}} \) of length \( 3.9 \mathrm{~cm} \), construct \( \overline{\mathrm{PQ}} \) such that the length of \( \overline{\mathrm{PQ}} \) is twice that of \( \overline{\mathrm{AB}} \). Verify by measurement.(Hint : Construct \( \overline{\mathrm{PX}} \) such that length of \( \overline{\mathrm{PX}}= \) length of \( \overline{\mathrm{AB}} \); then cut off \( \overline{\mathrm{XQ}} \) such that \( \overline{\mathrm{XQ}} \) also has the length of \( \overline{\mathrm{AB}} \).)"\n
- \( \mathrm{ABCD} \) is a rectangle and \( \mathrm{P}, \mathrm{Q}, \mathrm{R} \) and \( \mathrm{S} \) are mid-points of the sides \( \mathrm{AB}, \mathrm{BC}, \mathrm{CD} \) and \( \mathrm{DA} \) respectively. Show that the quadrilateral \( \mathrm{PQRS} \) is a rhombus.
- In the figure two straight lines \( \mathrm{AB} \& \mathrm{CD} \) intersect at \( \mathrm{O} \). If \( \angle \mathrm{COT}=60^{\circ} \), find \( \mathrm{a}, \mathrm{b}, \mathrm{c} \)."\n
- In Fig. 5.10, if \( \mathrm{AC}=\mathrm{BD} \), then prove that \( \mathrm{AB}=\mathrm{CD} \)."\n
- Draw any line segment \( \overline{\mathrm{AB}} \). Mark any point \( \mathrm{M} \) on it. Through \( \mathrm{M} \), draw a perpendicular to \( \overline{\mathrm{AB}} \). (use ruler and compasses)
- Given \( \overline{\mathrm{AB}} \) of length \( 7.3 \mathrm{~cm} \) and \( \overline{\mathrm{CD}} \) of length \( 3.4 \mathrm{~cm} \), construct a line segment \( \overline{X Y} \) such that the length of \( \overline{X Y} \) is equal to the difference between the lengths of \( \overline{\mathrm{AB}} \) and \( \overline{\mathrm{CD}} \). Verify by measurement.

Advertisements