- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In figure below, $ \mathrm{ABC} $ is a triangle right angled at $ \mathrm{B} $ and $ \mathrm{BD} \perp \mathrm{AC} $. If $ \mathrm{AD}=4 \mathrm{~cm} $, and $ C D=5 \mathrm{~cm} $, find $ B D $ and $ A B $.
"
Given:
\( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{B} \) and \( \mathrm{BD} \perp \mathrm{AC} \).
\( \mathrm{AD}=4 \mathrm{~cm} \), and \( C D=5 \mathrm{~cm} \)
To do:
We have to find \( B D \) and \( A B \).
Solution:
In $\Delta A D B$ and $\Delta C D B$,
$\angle A D B =\angle C D B=90^o$
$\angle B A D =\angle D B C=90^o-\angle C$
Therefore, by AA similarity,
$\Delta D B A \sim \Delta D C B$
This implies,
$\frac{D B}{D A} =\frac{D C}{D B}$
$D B^{2} =D A \times D C $
$D B^{2} =4 \times 5$
$D B =2 \sqrt{5} \mathrm{~cm}$
In $\triangle BDC$,
$B C^{2} =B D^{2}+C D^{2}$
$B C^{2}=(2 \sqrt{5})^{2}+(5)^{2}$
$=20+25$
$=45$
$B C=\sqrt{45}$
$=3 \sqrt{5}$
$\Delta D B A \sim \Delta D C B$
This implies,
$\frac{D B}{D C}=\frac{B A}{B C}$
$\frac{2 \sqrt{5}}{5}=\frac{B A}{3 \sqrt{5}}$
$B A=\frac{2 \sqrt{5} \times 3 \sqrt{5}}$
Hence $BD=2 \sqrt{5} \mathrm{~cm}$ and $BA=6 \mathrm{~cm}$.
- Related Articles
- In figure below, if \( \angle \mathrm{ACB}=\angle \mathrm{CDA}, \mathrm{AC}=8 \mathrm{~cm} \) and \( \mathrm{AD}=3 \mathrm{~cm} \), find \( \mathrm{BD} \)."
- In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
- In figure below, \( \mathrm{ABCD} \) is a parallelogram, \( \mathrm{AE} \perp \mathrm{DC} \) and \( \mathrm{CF} \perp \mathrm{AD} \). If \( \mathrm{AB}=16 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm} \) and \( \mathrm{CF}=10 \mathrm{~cm} \), find \( \mathrm{AD} \)."\n
- \( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
- In figure below, \( \mathrm{PQR} \) is a right triangle right angled at \( \mathrm{Q} \) and \( \mathrm{QS} \perp \mathrm{PR} \). If \( P Q=6 \mathrm{~cm} \) and \( P S=4 \mathrm{~cm} \), find \( Q S, R S \) and \( Q R \)."
- \( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{DC} \) and \( \mathrm{P} \) and \( \mathrm{Q} \) are points on \( \mathrm{AD} \) and \( B C \), respectively such that \( P Q \| D C \). If \( P D=18 \mathrm{~cm}, B Q=35 \mathrm{~cm} \) and \( \mathrm{QC}=15 \mathrm{~cm} \), find \( \mathrm{AD} \).
- Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{B}=75^{\circ} \) and \( \mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm} \).
- Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{B}=45^{\circ} \) and \( \mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm} \).
- \( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{C} \). A line through the mid-point \( \mathrm{M} \) of hypotenuse \( \mathrm{AB} \) and parallel to \( \mathrm{BC} \) intersects \( \mathrm{AC} \) at \( \mathrm{D} \). Show that(i) \( \mathrm{D} \) is the mid-point of \( \mathrm{AC} \)(ii) \( \mathrm{MD} \perp \mathrm{AC} \)(iii) \( \mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB} \)
- In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=\sqrt{30} \) and \( \mathrm{CM}=3 \), find \( \mathrm{AC} \).
- In \( \triangle \mathrm{ABC} \). the bisector of \( \angle \mathrm{A} \) intersects \( \mathrm{BC} \) at \( \mathrm{D} \). If \( \mathrm{AB}=8, \mathrm{AC}=10 \) and \( \mathrm{BC}=9 \), find \( \mathrm{BD} \) and \( \mathrm{DC} \).
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
- Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
- In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=8, \mathrm{AC}=15 \) and \( \mathrm{AD}=8.5 \), find \( \mathrm{BC} \).
- In quadrilateral \( A C B D \),\( \mathrm{AC}=\mathrm{AD} \) and \( \mathrm{AB} \) bisects \( \angle \mathrm{A} \) (see Fig. 7.16). Show that \( \triangle \mathrm{ABC} \cong \triangle \mathrm{ABD} \).What can you say about \( \mathrm{BC} \) and \( \mathrm{BD} \) ?"64391"\n
