# $\mathrm{ABCD}$ is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{P}$ and $\mathrm{Q}$ are points on $\mathrm{AD}$ and $B C$, respectively such that $P Q \| D C$. If $P D=18 \mathrm{~cm}, B Q=35 \mathrm{~cm}$ and $\mathrm{QC}=15 \mathrm{~cm}$, find $\mathrm{AD}$.

Given:

$\mathrm{ABCD}$ is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{P}$ and $\mathrm{Q}$ are points on $\mathrm{AD}$ and $B C$, respectively such that $P Q \| D C$.

$P D=18 \mathrm{~cm}, B Q=35 \mathrm{~cm}$ and $\mathrm{QC}=15 \mathrm{~cm}$

To do:

We have to find $AD$.

Solution:

Join $BD$

In $\vartriangle ABD$,

$PO \| AB$        [Since $AB \| CD \| PQ$]

Therefore, by basic proportionality theorem,

$\Rightarrow \frac{DP}{AP}=\frac{DO}{OB}$..........(i)

In $\vartriangle BDC$,

$OQ \| DC$        [Since $AB \| CD \| PQ$]

Therefore, by basic proportionality theorem,

$\frac{BQ}{QC}=\frac{OB}{OD}$

$\Rightarrow \frac{QC}{BQ}=\frac{OD}{OB}$..............(ii)

From (i) and (ii), we get,

$\frac{DP}{AP}=\frac{QC}{BQ}$

$\Rightarrow \frac{18}{AP}=\frac{15}{35}$

$\Rightarrow AP=\frac{18\times 35}{15}$

$\Rightarrow AP=42$

Therefore,

$AD=AP+DP$

$=42+18$

$=60\ cm$

Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

37 Views