$ \mathrm{ABCD} $ is a trapezium in which $ \mathrm{AB} \| \mathrm{DC} $ and $ \mathrm{P} $ and $ \mathrm{Q} $ are points on $ \mathrm{AD} $ and $ B C $, respectively such that $ P Q \| D C $. If $ P D=18 \mathrm{~cm}, B Q=35 \mathrm{~cm} $ and $ \mathrm{QC}=15 \mathrm{~cm} $, find $ \mathrm{AD} $.
Given:
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{DC} \) and \( \mathrm{P} \) and \( \mathrm{Q} \) are points on \( \mathrm{AD} \) and \( B C \), respectively such that \( P Q \| D C \).
\( P D=18 \mathrm{~cm}, B Q=35 \mathrm{~cm} \) and \( \mathrm{QC}=15 \mathrm{~cm} \)
To do:
We have to find $AD$.
Solution:
Join $BD$
In $\vartriangle ABD$,
$PO \| AB$ [Since $AB \| CD \| PQ$]
Therefore, by basic proportionality theorem,
$\Rightarrow \frac{DP}{AP}=\frac{DO}{OB}$..........(i)
In $\vartriangle BDC$,
$OQ \| DC$ [Since $AB \| CD \| PQ$]
Therefore, by basic proportionality theorem,
$\frac{BQ}{QC}=\frac{OB}{OD}$
$\Rightarrow \frac{QC}{BQ}=\frac{OD}{OB}$..............(ii)
From (i) and (ii), we get,
$\frac{DP}{AP}=\frac{QC}{BQ}$
$\Rightarrow \frac{18}{AP}=\frac{15}{35}$
$\Rightarrow AP=\frac{18\times 35}{15}$
$\Rightarrow AP=42$
Therefore,
$AD=AP+DP$
$=42+18$
$=60\ cm$
Related Articles \( A \) and \( B \) are respectively the points on the sides \( P Q \) and \( P R \) of a triangle \( P Q R \) such that \( \mathrm{PQ}=12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm} \) and \( \mathrm{PB}=4 \mathrm{~cm} . \) Is \( \mathrm{AB} \| \mathrm{QR} \) ? Give reasons for your answer.
In figure below, \( \mathrm{PA}, \mathrm{QB}, \mathrm{RC} \) and \( \mathrm{SD} \) are all perpendiculars to a line \( l, \mathrm{AB}=6 \mathrm{~cm} \), \( \mathrm{BC}=9 \mathrm{~cm}, C D=12 \mathrm{~cm} \) and \( S P=36 \mathrm{~cm} \). Find \( P Q, Q R \) and \( R S \)."
In figure below, \( \mathrm{ABCD} \) is a parallelogram, \( \mathrm{AE} \perp \mathrm{DC} \) and \( \mathrm{CF} \perp \mathrm{AD} \). If \( \mathrm{AB}=16 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm} \) and \( \mathrm{CF}=10 \mathrm{~cm} \), find \( \mathrm{AD} \)."\n
In figure below, \( \mathrm{PQR} \) is a right triangle right angled at \( \mathrm{Q} \) and \( \mathrm{QS} \perp \mathrm{PR} \). If \( P Q=6 \mathrm{~cm} \) and \( P S=4 \mathrm{~cm} \), find \( Q S, R S \) and \( Q R \)."
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
\( \mathrm{O} \) is the point of intersection of the diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a trapezium \( \mathrm{ABCD} \) with \( \mathrm{AB} \| \mathrm{DC} \). Through \( \mathrm{O} \), a line segment \( \mathrm{PQ} \) is drawn parallel to \( \mathrm{AB} \) meeting \( \mathrm{AD} \) in \( \mathrm{P} \) and \( \mathrm{BC} \) in \( \mathrm{Q} \). Prove that \( \mathrm{PO}=\mathrm{QO} \).
\( \mathrm{ABCD} \) is a rectangle and \( \mathrm{P}, \mathrm{Q}, \mathrm{R} \) and \( \mathrm{S} \) are mid-points of the sides \( \mathrm{AB}, \mathrm{BC}, \mathrm{CD} \) and \( \mathrm{DA} \) respectively. Show that the quadrilateral \( \mathrm{PQRS} \) is a rhombus.
DL and \( B M \) are the heights on sides \( A B \) and AD respectively of parallelogram \( \mathrm{ABCD} \) (Fig 11.24). If the area of the parallelogram \( \mathrm{A} \) is \( 1470 \mathrm{~cm}^{2}, \mathrm{AB}=35 \mathrm{~cm} \) and \( \mathrm{AD}=49 \mathrm{~cm} \), find the length of \( \mathrm{BM} \)"\n
In figure below, \( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{B} \) and \( \mathrm{BD} \perp \mathrm{AC} \). If \( \mathrm{AD}=4 \mathrm{~cm} \), and \( C D=5 \mathrm{~cm} \), find \( B D \) and \( A B \)."
In figure below, \( \mathrm{ABCD} \) is a parallelogram and \( \mathrm{BC} \) is produced to a point \( \mathrm{Q} \) such that \( \mathrm{AD}=\mathrm{CQ} \). If \( \mathrm{AQ} \) intersect \( \mathrm{DC} \) at \( \mathrm{P} \), show that ar \( (\mathrm{BPC})= \) ar \( (\mathrm{DPQ}) \).[Hint : Join \( \mathrm{AC} \). \( ] \)"\n
\( \mathrm{ABCD} \) is a rhombus and \( \mathrm{P}, \mathrm{Q}, \mathrm{R} \) and \( \mathrm{S} \) are the mid-points of the sides \( \mathrm{AB}, \mathrm{BC}, \mathrm{CD} \) and DA respectively. Show that the quadrilateral \( \mathrm{PQRS} \) is a rectangle.
In Fig. 7.48, sides \( \mathrm{AB} \) and \( \mathrm{AC} \) of \( \triangle \mathrm{ABC} \) are extended to points \( \mathrm{P} \) and \( \mathrm{Q} \) respectively. Also, \( \angle \mathrm{PBC}\mathrm{AB} \)."\n
If \( \mathrm{A}, \mathrm{B}, \mathrm{C} \) are three points on a line such that \( \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), which one of them lies between the other two?
Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
In figure, if \( \angle \mathrm{A}=\angle \mathrm{C}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BP}=15 \mathrm{~cm} \), \( \mathrm{AP}=12 \mathrm{~cm} \) and \( \mathrm{CP}=4 \mathrm{~cm} \), then find the lengths of \( \mathrm{PD} \) and CD."
Kickstart Your Career
Get certified by completing the course
Get Started