Bisectors of angles $ \mathrm{A}, \mathrm{B} $ and $ \mathrm{C} $ of a triangle $ \mathrm{ABC} $ intersect its circumcircle at $ \mathrm{D}, \mathrm{E} $ and Frespectively. Prove that the angles of the triangle $ \mathrm{DEF} $ are $ 90^{\circ}-\frac{1}{2} \mathrm{~A}, 90^{\circ}-\frac{1}{2} \mathrm{~B} $ and $ 90^{\circ}-\frac{1}{2} \mathrm{C} $.
Given:
Bisectors of angles \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) of a triangle \( \mathrm{ABC} \) intersect its circumcircle at \( \mathrm{D}, \mathrm{E} \) and $F$ respectively.
To do:
We have to prove that the angles of the triangle \( \mathrm{DEF} \) are \( 90^{\circ}-\frac{1}{2} \mathrm{~A}, 90^{\circ}-\frac{1}{2} \mathrm{~B} \) and \( 90^{\circ}-\frac{1}{2} \mathrm{C} \).
Solution:
$\angle EDF = \angle EDA + \angle ADF$
$\angle EDA$ and $\angle EBA$ are the angles in the same segment of the circle.
This implies,
$\angle EDA = \angle EBA$
Similarly,
$\angle ADF$ and $\angle FCA$ are the angles in the same segment of the circle.
This implies,
$\angle A D F=\angle F C A$
$\angle E D F= \angle EDA + \angle ADF$
$=\angle EBA+\angle F C A$
$=\frac{1}{2} \angle B+\frac{1}{2} \angle C$
$\angle D=\frac{\angle B+\angle C}{2}$
$=\frac{180^{\circ}-\angle A}{2}$ (Since $\angle A+\angle B+\angle C=180^{\circ}$)
$=90^o-\frac{\angle A}{2}$
Similarly,
$\angle E=\frac{\angle C+\angle A}{2}$
$\angle E=\frac{180^{\circ}-\angle B}{2}$ (Since $\angle A+\angle B+\angle C=180^{\circ}$)
$=90^o-\frac{\angle B}{2}$
$\angle E=\frac{\angle A+\angle B}{2}$
$\angle F=\frac{180^{\circ}-\angle C}{2}$ (Since $\angle A+\angle B+\angle C=180^{\circ}$)
$\angle F=90^{\circ}-\frac{\angle C}{2}$
Hence proved.
Related Articles In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{BM}=6 \) and \( \mathrm{CM}=2 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=12.5 \) and \( \mathrm{BC}=12 \). Find \( \mathrm{AC} \).
Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
\( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
In a quadrilateral \( \mathrm{ABCD}, \angle \mathrm{A}+\angle \mathrm{D}=90^{\circ} \). Prove that \( \mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2} \) [Hint: Produce \( \mathrm{AB} \) and DC to meet at E]
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \). If \( \mathrm{AC}-\mathrm{BC}=4 \) and \( \mathrm{BC}-\mathrm{AB}=4 \), find all the three sides of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=2 x^{2} \) and \( \mathrm{CM}=8 x^{2} \), find \( \mathrm{BM} \), AB and \( \mathrm{BC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AB}=2 \sqrt{10} \) and \( \mathrm{AM}=5 \), find \( \mathrm{CM} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is a median. If \( \mathrm{AB}=15 \) and \( \mathrm{BC}=20 \), find \( \mathrm{BM} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=10 \) and \( \mathrm{CM}=5 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \Delta \mathrm{XYZ}, \quad \angle \mathrm{Y}=90^{\circ} \). If \( \mathrm{XY}=a^{2}-\mathrm{b}^{2} \) and \( \mathrm{YZ}=2 a b \), find \( \mathrm{XZ} .(a>b>0) \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=\mathrm{BM}=12 \), find \( \mathrm{AC} \).
If \( \triangle \mathrm{ABC} \) is right angled at \( \mathrm{C} \), then the value of \( \cos (\mathrm{A}+\mathrm{B}) \) is(A) 0(B) 1(C) \( \frac{1}{2} \)(D) \( \frac{\sqrt{3}}{2} \)
\( \mathrm{D}, \mathrm{E} \) and \( \mathrm{F} \) are respectively the mid-points of the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) of a \( \triangle \mathrm{ABC} \). Show that(i) BDEF is a parallelogram.(ii) \( \operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(iii) \( \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \)
Construct a triangle \( \mathrm{XYZ} \) in which \( \angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ} \) and \( \mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11 \mathrm{~cm} \).
Kickstart Your Career
Get certified by completing the course
Get Started