$ \mathrm{ABCD} $ is a rhombus. Show that diagonal $ \mathrm{AC} $ bisects $ \angle \mathrm{A} $ as well as $ \angle \mathrm{C} $ and diagonal $ \mathrm{BD} $ bisects $ \angle \mathrm{B} $ as well as $ \angle \mathrm{D} $.
Given:
\( \mathrm{ABCD} \) is a rhombus.
To do :
We have to show that diagonal \( \mathrm{AC} \) bisects \( \angle \mathrm{A} \) as well as \( \angle \mathrm{C} \) and diagonal \( \mathrm{BD} \) bisects \( \angle \mathrm{B} \) as well as \( \angle \mathrm{D} \).
Solution :
$AC$ and $BD$ are the diagonals which intersect each other at $O$.
$AD = CD$ (Sides of a rhombus are equal)
$\angle DAC = \angle DCA$ (Angles opposite to equal sides of a triangle are equal)
$AB \| CD$
$\angle DAC = \angle BCA$ (Alternate interior angles)
$\angle DCA = \angle BCA$
This implies,
$AC$ bisects $\angle C$
Similarly,
$AC$ bisects $\angle A$
$BD$ bisects $\angle D$
$BD$ bisects $\angle B$
Therefore, \( \mathrm{AC} \) bisects \( \angle \mathrm{A} \) as well as \( \angle \mathrm{C} \) and diagonal \( \mathrm{BD} \) bisects \( \angle \mathrm{B} \) as well as \( \angle \mathrm{D} \).
Hence proved.
Related Articles \( \mathrm{ABCD} \) is a rectangle in which diagonal \( \mathrm{AC} \) bisects \( \angle \mathrm{A} \) as well as \( \angle \mathrm{C} \). Show that:(i) \( \mathrm{ABCD} \) is a square (ii) diagonal \( \mathrm{BD} \) bisects \( \angle \mathrm{B} \) as well as \( \angle \mathrm{D} \).
Diagonal \( \mathrm{AC} \) of a parallelogram \( \mathrm{ABCD} \) bisects \( \angle \mathrm{A} \) (see below figure). Show that(i) it bisects \( \angle \mathrm{C} \) also,(ii) \( \mathrm{ABCD} \) is a rhombus."\n
ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that, (i) ABCD is a square (ii) Diagonal BD bisects $\angle B$ as well as $\angle D$.
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{CD} \) and \( \mathrm{AD}=\mathrm{BC} \) (see below figure). Show that(i) \( \angle \mathrm{A}=\angle \mathrm{B} \)(ii) \( \angle \mathrm{C}=\angle \mathrm{D} \)(iii) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{BAD} \)(iv) diagonal \( \mathrm{AC}= \) diagonal \( \mathrm{BD} \)[Hint: Extend \( \mathrm{AB} \) and draw a line through \( \mathrm{C} \) parallel to \( \mathrm{DA} \) intersecting \( \mathrm{AB} \) produced at E.]"\n
In a parallelogram \( \mathrm{ABCD}, \angle \mathrm{A}: \angle \mathrm{B}=2: 3, \) then find angle \( \mathrm{D} \).
In an isosceles triangle \( \mathrm{ABC} \), with \( \mathrm{AB}=\mathrm{AC} \), the bisectors of \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \) intersect each other at \( O \). Join \( A \) to \( O \). Show that :(i) \( \mathrm{OB}=\mathrm{OC} \)(ii) \( \mathrm{AO} \) bisects \( \angle \mathrm{A} \)
\( \angle \mathrm{A} \) and \( \angle \mathrm{B} \) are supplementary angles. \( \angle \mathrm{A} \) is thrice \( \angle \mathrm{B} \). Find the measures of \( \angle \mathrm{A} \) and \( \angle \mathrm{B} \)\( \angle \mathrm{A}=\ldots \ldots, \quad \angle \mathrm{B}=\ldots \ldots \)
Choose the correct answer from the given four options:If in triangles \( \mathrm{ABC} \) and \( \mathrm{DEF}, \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{FD}} \), then they will be similar, when(A) \( \angle \mathrm{B}=\angle \mathrm{E} \)(B) \( \angle \mathrm{A}=\angle \mathrm{D} \)(C) \( \angle \mathrm{B}=\angle \mathrm{D} \)(D) \( \angle \mathrm{A}=\angle \mathrm{F} \)
Choose the correct answer from the given four options:In triangles \( \mathrm{ABC} \) and \( \mathrm{DEF}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{F}=\angle \mathrm{C} \) and \( \mathrm{AB}=3 \mathrm{DE} \). Then, the two triangles are(A) congruent but not similar(B) similar but not congruent(C) neither congruent nor similar(D) congruent as well as similar
\( \mathrm{ABC} \) is an isosceles triangle with \( \mathrm{AB}=\mathrm{AC} \). Draw \( \mathrm{AP} \perp \mathrm{BC} \) to show that \( \angle \mathrm{B}=\angle \mathrm{C} \).
In Fig 7.51, PR \( > \) PQ and \( \mathrm{PS} \) bisects \( \angle \mathrm{QPR} \). Prove that \( \angle \mathrm{PSR}>\angle \mathrm{PSQ} \)."\n
\( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
In quadrilateral \( A C B D \),\( \mathrm{AC}=\mathrm{AD} \) and \( \mathrm{AB} \) bisects \( \angle \mathrm{A} \) (see Fig. 7.16). Show that \( \triangle \mathrm{ABC} \cong \triangle \mathrm{ABD} \).What can you say about \( \mathrm{BC} \) and \( \mathrm{BD} \) ?"64391"\n
In Fig. 7.21, \( \mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD} \) and \( \angle \mathrm{BAD}=\angle \mathrm{EAC} \). Show that \( \mathrm{BC}=\mathrm{DE} \)."\n
In figure below, if \( \angle \mathrm{ACB}=\angle \mathrm{CDA}, \mathrm{AC}=8 \mathrm{~cm} \) and \( \mathrm{AD}=3 \mathrm{~cm} \), find \( \mathrm{BD} \)."
Kickstart Your Career
Get certified by completing the course
Get Started