Verify that a[$b+c$] is equal to [$a\times b$]+[$a\times c$] if a=12 ,b=-4, c=2
Solution:
We need check if LHS= RHS
L. H.S
$ a=12 ,b=-4, c=2$
$a*(b+c) = 12 \times(-4 + 2 )$
= $12 \times(-2)$
= $-24$
$a\times(b+c) = -24$
R.H.S
$ a=12 ,b=-4, c=2$
$ (a\times b)+(a\times c) = (12 \times -4) + (12 \times 2)$
= $ -48 + 24$
= $ -24$
$(a*b)+(a*c)$ = $-24$
L.H.S = R.H.S
So, $a\times(b+c) = (a\times b)+(a\times c)$
Hence verified.
- Related Articles
- Verify the following properties for the given values of a, b, c. $a=-3, b=1$ and $c=-4$.Property 1: $a\div (b+c) ≠ (a÷b) +c$Property 2: $a\times (b+c) =(a\times b)+(a\times c)$Property 3: $a\times (b-c)=(a\times b) -(a\times c)$
- If $1176 = 2^a \times 3^b \times 7^c$, find $a, b$ and $c$.
- Verify that $a ÷ (b+c) ≠ (a ÷ b) + (a ÷ c)$ for each of the following values of $a,\ b$ and $c$.(a) $a=12,\ b=- 4,\ c=2$(b) $a=(-10),\ b = 1,\ c = 1$
- In \( \triangle A B C, \angle A \) is obtuse, \( P B \perp A C, \) and \( Q C \perp A B \). Prove that \( B C^{2}=\left(A C \times C P +A B \times B Q\right) \).
- If speed of a car becomes 2 times, its kinetic energy becomes: (a) 4 times (b) 8 times (c) 16 times(d) 12 times
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
- Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
- If $1176 = 2^a \times 3^b \times 7^c$, find the values of $a, b$ and $c$. Hence, compute the value of $2^a \times 3^b \times 7^{-c}$ as a fraction.
- Find the values of a, b and c.$4879 = (4\times a)+(8\times b)+(7\times c)+9$
- In \( \triangle A B C, \angle A \) is obtuse, \( P B \perp A C, \) and \( Q C \perp A B \). Prove that \( A B \times A Q=A C \times A P \).
- Express the following in exponential form:$(i)$. $6\times6\times6\times6$$(ii)$. $t\times t$$(iii)$. $b\times b\times b\times b$$(iv)$. $5\times5\times7\times7\times7$$(v)$. $2\times2\times a\times a$$(vi)$. $a\times a\times a\times c\times c\times c\times c\times d$
- Factorize:\( 6 a b-b^{2}+12 a c-2 b c \)
- If the roots of the equation $a(b-c) x^2+b(c-a) x+c(a-b) =0$ are equal, then prove that $b(a+c) =2ac$.
- Evaluate\( \left(\frac{-4}{7} a^{2} b\right) \times\left(\frac{-2}{3} b^{2} c\right) \times\left(\frac{-7}{6} c^{2} a\right) \)
- Evaluate\( \left(\frac{4}{9} a b c^{3}\right) \times\left(\frac{-27}{5} a^{3} b^{2}\right) \times\left(-8 b^{3} c\right) \)
Kickstart Your Career
Get certified by completing the course
Get Started