If the roots of the equation $a(b-c) x^2+b(c-a) x+c(a-b) =0$ are equal, then prove that $b(a+c) =2ac$.
Given: $a(b-c)x^2+b(c-a)x+c(a-b)=0$
To do: To prove $b(a+c) =2ac$.
Solution:
$a(b-c)x^2+b(c-a)x+c(a-b)=0$, also zeroes of given equation are equal.
Therefore, Discriminant$=0$
$\Rightarrow B^2-4AC=0$
$\Rightarrow [b(c-a)]^2-4[a(b-c)c(a-b)]=0$
$\Rightarrow b^2(c^2+a^2-2ac)-4(ab-ac)(ac-bc)=0$
$\Rightarrow b^2c^2+a^2b^2-2ab^2c-4(a^2bc-ab^2c-a^2c^2+abc^2)=0$
$\Rightarrow b^2c^2+a^2b^2-2ab^2c-4a^2bc+4ab^2c+4a^2c^2-4abc^2=0$
$\Rightarrow b^2c^2+a^2b^2+2ab^2c-4a^2bc +4a^2c^2-4abc^2=0$
$\Rightarrow b^2c^2+a^2b^2+4a^2c^2+2ab^2c -4a^2bc-4abc^2=0$
We know that,
$\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=(a+b+c)^2$
By above identity we get,
$\Rightarrow (bc+ab-2ac)^2=0$
$\Rightarrow bc+ab-2ac=0$
$\Rightarrow b(a+c)=2ac$
$\Rightarrow b=\frac{2ac}{(a+c)}$
Hence if zeroes of given quadratic equation are equal then,
$b=\frac{2ac}{(a+c)}$
- Related Articles
- If the roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ are equal, then prove that $2b=a+c$.
- If the roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ are equal. Prove that $2b=a+c$
- Prove that both the roots of the equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are real but they are equal only when $a=b=c$.
- If the roots of the equation $(a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0$ are equal, prove that $\frac{a}{b}=\frac{c}{d}$.
- If the roots of the equation $(c^2-ab)x^2-2(a^2-bc)x+b^2-ac=0$ are equal, prove that either $a=0$ or $a^3+b^3+c^3=3abc$.
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
- Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
- If roots of equation $x^2+x+1=0$ are $a,\ b$ and roots of $x^2+px+q=0$ are $\frac{a}{b},\ \frac{b}{a}$; then find the value of $p+q$.
- Determine the nature of the roots of the following quadratic equations: $(b+c)x^2-(a+b+c)x+a=0$
- Show that:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
- Let $f(x)=3ax^2−4bx+c$ $(a,b,c∈R,a\neq 0)$ where $a,\ b,\ c$ are in A.P. Then how many roots the equation $f(x)=0$$ have? Are they real?
- Prove that\( \frac{1}{1+x^{b-a}+x^{c-a}}+\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{b-c}+x^{a-c}}=1 \)
- If \( a^{x}=b^{y}=c^{z} \) and \( b^{2}=a c \), then show that \( y=\frac{2 z x}{z+x} \).
- Show that the equation $2(a^2+b^2)x^2+2(a+b)x+1=0$ has no real roots, when a≠b.
- Suppose $a,\ b,\ c$ are in AP, then prove that $b=\frac{a+c}{2}$.
Kickstart Your Career
Get certified by completing the course
Get Started