Express the following in exponential form:
$(i)$. $6\times6\times6\times6$
$(ii)$. $t\times t$
$(iii)$. $b\times b\times b\times b$
$(iv)$. $5\times5\times7\times7\times7$
$(v)$. $2\times2\times a\times a$
$(vi)$. $a\times a\times a\times c\times c\times c\times c\times d$
Given:
$(i)$. $6\times6\times6\times6$
$(ii)$. $t\times t$
$(iii)$. $b\times b\times b\times b$
$(iv)$. $5\times5\times7\times7\times7$
$(v)$. $2\times2\times a\times a$
$(vi)$. $a\times a\times a\times c\times c\times c\times c\times d$
To do: To express the given terms in exponential form.
Solution:
$(i)$. $6\times6\times6\times6$
$=6^4$
$(ii)$. $t\times t$
$=t^2$
$(iii)$. $b\times b\times b\times b$
$=b^4$
$(iv)$. $5\times5\times7\times7\times7$
$=5^{2\ }\times7^3$
$(v)$. $2\times2\times a\times a$
$=2^2\times a^2$
$(vi)$. $a\times a\times a\times c\times c\times c\times c\times d$
$=a^3\times c^4\times d$
- Related Articles
- Verify the following:(a) $18\times[7 + (-3)]=[18\times7] + [18\times(-3)]$(b) $(-21)\times[(- 4) + (- 6)]=[(-21)\times(- 4)] + [(-21)\times(- 6)]$
- Simplify:$(i)$. $\frac{(2^5)^2\times7^3}{8^3\times7}$$(ii)$. $\frac{25\times5^2\times t^8}{10^3\times t^4}$$(iii)$. $\frac{3^5\times10^5\times25}{5^7\times6^5}$
- Find each of the following products:(a) $3\times(-1)$(b) $(-1)\times225$(c) $(-21)\times(-30)$ (d) $(-316)\times(-1)$(e) $(-15)\times0\times(-18)$ (f) $(-12)\times(-11)\times(10)$(g) $9\times(-3)\times(- 6)$ (h) $(-18)\times(-5)\times(- 4)$(i) $(-1)\times(-2)\times(-3)\times4$(j) $(-3)\times(-6)\times(-2)\times(-1)$
- Find:$(i).\ 0.2 \times 6$$(ii).\ 8 \times 4.6$$(iii).\ 2.71 \times 5$ $(iv).\ 20.1 \times 4$$(v).\ 0.05 \times 7$$(vi). 211.02 \times 4$$(vii).\ 2 \times 0.86$
- Express the following in exponential form:$6 \times 6 \times 6 \times 6$
- In which of the following expressions, has prime factorization been done?$( a)\ 40=2 \times 2 \times 2 \times 5$$( b)\ 42=7\times6$.
- Find the product by suitable rearrangement:(a) \( 2 \times 1768 \times 50 \)(b) $4 \times 166 \times 25$ (c) $8 \times 291 \times 125$(d) $625 \times 279 \times 16$(e) $285 \times 5 \times 60$(f) $125 \times 40 \times 8 \times 25$
- In which of the following expressions, prime factorisation has been done?(a) \( 24=2 \times 3 \times 4 \)(b) $56 = 7 \times 2 \times 2 \times 2$(c) $70 = 2 \times 5 \times 7$ (d) $54 = 2 \times 3 \times 9$
- Find the value of the following:(a) \( 297 \times 17+297 \times 3 \)(b) $54279 \times 92 + 8 \times 54279$(c) $81265 \times 169 – 81265 \times 69$ (d) $3845 \times 5 \times 782 + 769 \times 25 \times 218$
- Verify the following properties for the given values of a, b, c. $a=-3, b=1$ and $c=-4$.Property 1: $a\div (b+c) ≠ (a÷b) +c$Property 2: $a\times (b+c) =(a\times b)+(a\times c)$Property 3: $a\times (b-c)=(a\times b) -(a\times c)$
- Find the products of the following:(i). $(-4) \times (-5) \times (-8) \times (-10)$(ii). $(-6) \times (-5) \times (-7) \times (-2) \times (-3)$
- If speed of a car becomes 2 times, its kinetic energy becomes: (a) 4 times (b) 8 times (c) 16 times(d) 12 times
- Explain the following properties:i) ($-$a1) $\times$ ($-$a2) $\times$ ($-$a3) $\times$ ... $\times$ ($-$an) = $-$ (a1 $\times$ a2 $\times$ a3 $\times$ ... $\times$ an), when n is odd.ii) ($-$a1) $\times$ ($-$a2) $\times$ ($-$a3) $\times$ ... $\times$ ($-$an) = (a1 $\times$ a2 $\times$ a3 $\times$ ... $\times$ an), when n is even.iii) ($-$a) $\times$ ($-$a) $\times$ ($-$a) $\times$ ... n times = $-$ an, when n is odd. iv) (-$a) $\times$ ($-$a) $\times$ ($-$a) $\times$ ... n times = an, when n is even. v) ($-$1) $\times$ ($-$1) $\times$ ($-$1) $\times$ ... n times = $-$ 1, when n is odd.v) ($-$1) $\times$ ($-$1) $\times$ ($-$1) $\times$ ... n times = 1, when n is even.
- Evaluate the following:(i) $102 \times 106$(ii) $109 \times 107$(iii) $35 \times 37$(iv) $53 \times 55$(v) $103 \times 96$(vi) $34 \times 36$(vii) $994 \times 1006$
- Find the values of a, b and c.$4879 = (4\times a)+(8\times b)+(7\times c)+9$
Kickstart Your Career
Get certified by completing the course
Get Started